光学学报, 2017, 37 (6): 0626002, 网络出版: 2017-06-08   

相位差因子调控的Ince-Gaussian光束空间模式分布 下载: 507次

Spatial Mode Distributions of Ince-Gaussian Beams Modulated by Phase Difference Factor
作者单位
1 河南科技大学物理工程学院, 河南 洛阳 471023
2 中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室, 陕西 西安 710119
3 广东工业大学物理与光电工程学院, 广东 广州 510006
摘要
提出了一种基于奇偶模初始相位差因子调控的新型Ince-Gaussian(IG)光束, 即PIG(Ince-Gaussian beam with phase difference)光束。对传统IG光束偶模施加具有初始相位差φ的e指数相位因子, 将偶模与奇模进行线性叠加后得到了PIG光束。在其他参数相同的条件下, 重点研究了初始相位差调控因子对PIG光束空间模式的调控特性。数值模拟和实验结果表明: 当参数φ在0到π区间上连续取值时, 可实现正负涡旋PIG光束的连续变换; 当φ=π/2时, 中间状态涡旋消失; 调节φ使其为π的整数倍, 可以实现正负涡旋模式的跳变切换; 当调节φ为π的半整数倍时, 该光束可实现光瓣在椭圆轨迹上的精确位移控制。PIG光束为微粒操纵及光束微雕刻等领域提供了额外的调控自由度。
Abstract
A novel type of Ince-Gaussian (IG) beam, named as PIG (Ince-Gaussian beam with phase difference) beam, based on the initial phase difference factor modulation between even mode and odd mode of IG beam is proposed. The PIG beam is generated by the linear superposition of the even mode and the odd mode of traditional IG beam after the even mode being multiplied an exponential phase factor with an initial phase difference of φ. The modulation properties of the initial phase difference factor on spatial mode of the PIG beam are mainly studied when other parameters are the same. Numerical simulations and experimental results show that the PIG beam changes from positive vortex state to negative vortex state when φ continuously increases from 0 to π. The vortex state is vanished when φ=π/2. As φ is equal to integer multiple of π, the switch from the positive vortex state to the negative vortex state is realized. As φ is equal to half-integer multiple of π, light traps of the PIG beams can be accurately controlled to move on the oval orbit. The PIG beam will provides an additional degree of freedom for micro-particle operation and beam micro-machining.
参考文献

[1] 李新忠, 田晓敏, 王 辉, 等. 拉盖尔-高斯光束照射产生散斑场的特性研究[J]. 光学学报, 2015, 35(7): 0726001.

    Li Xinzhong, Tian Xiaomin, Wang Hui, et al. Study on properties of speckle field formed by Laguerre-Gaussian beam illumination[J]. Acta Optica Sinica, 2015, 35(7): 0726001.

[2] 李新忠, 台玉萍, 李贺贺, 等. 分数阶高阶贝塞尔涡旋光束的矢量波分析法研究[J]. 中国激光, 2016, 43(6): 0605002.

    Li Xinzhong, Tai Yuping, Li Hehe, et al. Properties study of the fractional order high order Bessel vortex beam using vector wave analysis[J]. Chinese J Lasers, 2016, 43(6): 0605002.

[3] 李新忠, 孟 莹, 李贺贺, 等. 完美涡旋光束的产生及其空间自由调控技术[J]. 光学学报, 2016, 36(10): 1026018.

    Li Xinzhong, Meng Ying, Li Hehe, et al. Generation of perfect vortex beams and space free-control technology[J]. Acta Optica Sinica, 2016, 36(10): 1026018.

[4] Ma H X, Li X Z, Tai Y P, et al. In situ measurement of the topological charge of a perfect vortex using the phase shift method[J]. Optics Letters, 2017, 42(1): 135-138.

[5] Li X Z, Tai Y P, Lü F J, et al. Measuring the fractional topological charge of LG beams by using interference intensity analysis[J]. Optics Communications, 2015, 334: 235-239.

[6] Li X Z, Tai Y P, Nie Z G, et al. Fraunhofer diffraction of Laguerre-Gaussian beam caused by a dynamic superposed dual-triangular aperture[J]. Optical Engineering, 2015, 54(12): 123113.

[7] Lü F J, Li X Z, Tai Y P, et al. High-order topological charges measurement of LG vortex beams with a modified Mach-Zehnder interferometer[J]. Optik-International Journal for Light and Electron Optics, 2015, 126(23): 4378-4381.

[8] Molina-Terriza G, Torres J P, Torner L. Twisted photons[J]. Nature Physics, 2007, 3(5): 305-310.

[9] Grier D G. A revolution in optical manipulation[J]. Nature, 2003, 424(6950): 810-816.

[10] Tao S H, Yuan X C, Lin J, et al. Fractional optical vortex beam induced rotation of particles[J]. Optics Express, 2005, 13(20): 7726-7731.

[11] Crabtree K, Davis J A, Moreno I. Optical processing with vortex-producing lenses[J]. Applied Optics, 2004, 43(6): 1360-1367.

[12] Li X Z, Tai Y P, Nie Z G. Digital speckle correlation method based on phase vortices[J]. Optical Engineering, 2012, 51(7): 077004.

[13] Chu S C, Otsuka K. Stable donutlike vortex beam generation from lasers with controlled Ince-Gaussian modes[J]. Applied Optics, 2007, 46(31): 7709-7719.

[14] Chu S C. Generation of multiple vortex beams with specified vortex number from lasers with controlled Ince-Gaussian modes[J]. Japanese Journal of Applied Physics, 2008, 47(7R): 5297-5303.

[15] Ohtomo T, Chu S C, Otsuka K. Generation of vortex beams from lasers with controlled Hermite- and Ince-Gaussian modes[J]. Optics Express, 2008, 16(7): 5082-5094.

[16] Chu S C, Yang C S, Otsuka K. Vortex array laser beam generation from a Dove prism-embedded unbalanced Mach-Zehnder interferometer[J]. Optics Express, 2008, 16(24): 19934-19949.

[17] Chu S C. Generation of vortex array laser beams with Dove prism embedded unbalanced Mach-Zehnder interferometer[C]. SPIE, 2009, 7227: 72270L.

[18] Chu S C, Otsuka K. Selective excitation of high-order laser modes and its application to vortex array laser beam generation[C]. SPIE, 2010, 7613: 761303.

[19] Kuo C F, Chu S C. Numerical study of the properties of optical vortex array laser tweezers[J]. Optics Express, 2013, 21(22): 26418-26431.

[20] 张霞萍, 刘友文. 强非局域非线性介质中光束传输的Ince-Gauss解[J]. 物理学报, 2009, 58(12): 8332-8338.

    Zhang Xiaping, Liu Youwen. Analytical solution in the Ince-Gaussian form of the beam propagating in the strong nonlocal media[J]. Acta Physica Sinica, 2009, 58(12): 8332-8338.

[21] Bandres M A, Gutiérrez-Vega J C. Ince-Gaussian beams[J]. Optics Letters, 2004, 29(2): 144-146.

[22] Bandres M A, Gutiérrez-Vega J C. Ince-Gaussian modes of the paraxial wave equation and stable resonators[J]. Journal of the Optical Society of America A, 2004, 21(5): 873-880.

[23] Bentley J B, Davis J A, Bandres M A, et al. Generation of helical Ince-Gaussian beams with a liquid-crystal display[J]. Optics Letters, 2006, 31(5): 649-651.

[24] Woerdemann M, Alpmann C, Denz C.Optical assembly of microparticles into highly ordered structures using Ince-Gaussian beams[J]. Applied Physics Letters, 2011, 98(11): 111101.

[25] Peng Y, Chen B, Peng X, et al. Self-accelerating Airy-Ince-Gaussian and Airy-Helical-Ince-Gaussian light bullets in free space[J]. Optics Express, 2016, 24(17): 18973-18985.

[26] Lei J, Hu A, Wang Y, et al. A method for selective excitation of Ince-Gaussian modes in an end-pumped solid-state laser[J]. Applied Physics B, 2014, 117(4): 1129-1134.

马海祥, 李新忠, 李贺贺, 唐苗苗, 王静鸽, 汤洁, 王屹山, 聂兆刚. 相位差因子调控的Ince-Gaussian光束空间模式分布[J]. 光学学报, 2017, 37(6): 0626002. Ma Haixiang, Li Xinzhong, Li Hehe, Tang Miaomiao, Wang Jingge, Tang Jie, Wang Yishan, Nie Zhaogang. Spatial Mode Distributions of Ince-Gaussian Beams Modulated by Phase Difference Factor[J]. Acta Optica Sinica, 2017, 37(6): 0626002.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!