光学学报, 2019, 39 (1): 0126007, 网络出版: 2019-05-10   

超快飞秒激光场中原子分子量子态调控 下载: 1073次封面文章

Controlling Quantum States of Atoms and Molecules by Ultrafast Femtosecond Laser Fields
作者单位
吉林大学原子与分子物理研究所应用原子分子光谱重点实验室, 吉林 长春 130012
摘要
超快激光及其调控技术的发展使得原子分子量子态超快测控受到广泛关注,这些研究加深了对强激光与原子分子量子态相互作用的认识。本文回顾了相关领域的研究进展,特别集中在超快激光场对分子转动、解离的调控以及原子分子电离的量子态调控的研究,并对未来发展进行了展望。
Abstract
Ultrafast controlling of atomic and molecular quantum states has attracted intensive attention benefited from the development of ultrafast laser and its manipulation. The related researches have led to increasing understanding of the interaction between intense laser field and quantum states of atoms or molecules. In the present paper we review the research progress in this field, particularly focusing on the quantum control of molecular rotation and dissociation in ultrafast laser fields, ionization of atoms and molecules in such ultrafast manipulated laser fields, and prospects for future development.

1 引言

人们对原子分子的认识和操控与激光的发展是紧密联系的,其中啁啾脉冲放大技术(2018年诺贝尔物理学奖)大大提高了超快强激光的脉冲能量[1],为研究原子分子量子态的含时演化过程(如转动、振动、解离和电离)和强场激光物理提供新的机遇。目前已经能够产生脉冲宽度最短达43 as(1 as=10-18 s)的脉冲光场,能够实现原子分子量子动力学过程时间尺度上的超快时间分辨;以及峰值功率达1022 W/cm2的超强光场,即与原子分子内部相互作用强度可比拟的外场强度[2-3]。在单光子能量上以自由电子激光为代表的新一代同步辐射光源能够产生相干短波长(真空紫外至硬X射线)光辐射,同时利用强激光驱动原子分子产生高次谐波及超连续辐射实现短波长相干辐射光源[2,4],而这些新型光场覆盖了原子分子内部运动的能量范围(如图1所示)。与此同时,各种光场调控技术(包括超短激光脉冲整形技术、载波相位控制技术及多色组合场技术)带来了全新的光场调控变量,产生特定多维度(偏振、相位、频率、振幅、脉宽及模场)时空结构的先进光场,为通过光场与物质相互作用实现物质内部运动的精密调控提供全新的途径[5-6]。研究先进光场对原子、分子、电子以及其他物质体系的调控,在不同时间尺度(ps,fs,as)及能量尺度(meV,eV,keV)下观察和调控原子分子量子态的超快行为,将对物质中能量、状态、性质及变化规律产生新的认识,为认识物质内部电子动力学及产生的新现象、新效应、新规律打开一扇新的大门。目前已经实现对价电子运动、光电子发射时间延迟及分子势能面角锥交叉动力学的实时观测,对电子运动在空间精度为埃及时间精度(达10 as量级)的超高精密调控[7-10]。随着超快光场的发展,一个全新学科领域——阿秒物理学正在国际上兴起。在阿秒时间尺度和原子空间尺度探索微观世界物质内部的能量和物质转移及信息传递过程,从而理解物质内部的复杂动力学过程及光与物质相互作用的能量和角动量传递过程,进而实现相关物理、化学和生物过程精确的量子调控,并探索和开拓在化学、能源、信息及生物等领域的应用。

本文回顾了原子分子在激光场中的超快量子调控的进展,并对其取得的成果和未来发展进行介绍。原子分子的超快量子调控发展得益于激光技术的快速发展,同时也推动着新型激光光源的发展和产生。

图 1. 微观物质运动的特征时间尺度和对应的能量,及现代光学技术能够实现相应时间尺度和光子能量的技术方法

Fig. 1. Characteristic time scale and corresponding energy of microscopic material motion, and the modern optical technology capable of achieving the corresponding time scale and photon energy

下载图片 查看所有图片

2 超快光场调控及分子转动动力学操控

自由分子转动的操控在分子结构成像及分子立体反应动力学等方面具有重要意义。对于极性分子,外电场操控分子的空间转动是一种有效的方法,特别是利用脉冲激光施加瞬时强极性电场使分子产生无场(Field-free)空间定向,例如分子的准直及取向过程[11-13]。超快激光场中分子的旋转,取决于光场瞬时特性(偏振、强度及脉冲宽度)及分子转动激发特性(如沿特定轴角动量的取向)的变化,反映了相干转动量子态的相互作用。如图2所示,在超快光场辐照下,分子转动的相干激发主要表现为特定转动量子态布居的相干增强或减弱而产生的分子准直、取向及单向旋转等,主要物理过程源于转动态波包在超快光场作用下形成的相干转动动力学。超快光场驱动分子转动动力学的研究在高次谐波的发射(HHG)、光电子角分布测量、分子轨道成像、超快X射线衍射(UXD)及分子的电离解离等方面具有广泛的应用前景[14-16]

图 2. 在超快激光作用下得到的(a)分子准直、(b)取向及(c)单向旋转示意图

Fig. 2. Schematics of (a) molecular alignment, (b) orientation and (c) unidirectional rotation irradiated by ultrafast laser

下载图片 查看所有图片

超快光场诱导分子转动依据激光脉冲宽度,可产生绝热和非绝热准直取向。在绝热区域,激光脉冲时域宽度远大于分子的转动周期,通过激光电场与分子的相互作用能够最大程度实现分子准直,激光场关闭后准直现象也随之消失;在非绝热区域,飞秒时间尺度的超快光场作用于分子体系,准直现象在激光场消失后依然能够周期性重现。因此,通过飞秒激光场调控能够在不同相互作用区(微扰或非微扰)实现特定分子的各种准直和取向。分子的非绝热准直不仅可以得到无场的排列分子,还能得到分子在飞秒激光作用下的转动态布居的激发过程。Leibscher等[17]首先在理论上论证了脉冲序列光场实现的子脉冲的连续快踢(Kick)作用提高分子非绝热准直的程度,通过飞秒激光整形优化控制分子非绝热准直的可能性;Bisgaard等[18]在实验上实现通过优化激光双脉冲间隔与相对强度提高分子非绝热准直的程度;Underwood等[19]使用缓慢打开、快速关闭的激光脉冲作用分子体系,结合 Raman-Type 跃迁理论模型,实验上实现对分子非绝热准直的优化;此外,一些研究在飞秒激光相位整形脉冲基础上引入闭环自反馈方法,使实验系统自优化获取分子准直度最高的条件,为无场准直分子的制备提供实验方案[20-21]。利用飞秒激光作用转动态选择的溴甲烷分子,Luo等[22]测量分子非绝热准直和取向的超快演化,实现分子高程度准直和取向的控制,并对比不同初始转动量子态对分子准直和取向的影响,如图3所示;进一步结合转动量子态的选择技术,研究分子转动量子态在飞秒激光作用后的非绝热激发过程,对分子转动态的激发跃迁过程进行认定[23]

图 3. (a)~(d)飞秒激光作用转动态选择的溴甲烷分子获得的不同延迟时间下分子取向演化和分子准直及(e)取向分布随时间的变化 [22]

Fig. 3. (a)-(d) Molecular orientation evolution at different delay time irradiated by femtosecond lasers for rotational states selected methyl-bromide molecules and (e) evolution of the measured angular distribution of the alignment and orientation with different delay time and angle θ2D22

下载图片 查看所有图片

超快光场不仅会诱导分子产生上述特定分子轴的一维准直现象,而且通过光场偏振的控制可在多个维度同样产生非局域化的准直现象,即平面准直和三维准直。图4是偏振整形产生的准三维整形光场,可实现不同脉冲偏振方向和强度的调控,三维整形的激光脉冲可用于分子准直取向的三维控制,实现分子高程度的全维排列操控。从Larsen等[24]提出使用椭圆偏振非共振激光场实现空间结构分子的三维准直以来,激光场调控分子三维准直受到广泛关注。Lee等[25]较早地使用特定间隔、正交的非共振双脉冲激光场在实验上实现多原子分子的三维无场准直;通过这些方法还可控制分子绕特定轴旋转产生三维准直并实现准直周期性的重建(如图5所示)[26]

图 4. (a)准三维偏振整形光场示意图,激光沿z方向传播,其中红色和蓝色分别代表激光电场在x和y方向的分量;(b)激光电场在y方向的投影;(c)激光电场在x方向的投影

Fig. 4. (a) Schematic of the quasi-three-dimensional polarization shaped light field. The laser propagates in the z direction, wherein red and blue respectively represents the components of the laser electric field in the x and y directions; (b) the projection of the laser electric field in the y direction; (c) the projection of the laser electric field in the x direction

下载图片 查看所有图片

图 5. (a)、(b)一维准直与(c)、(d)三维准直示意图[26]

Fig. 5. Schematics of (a), (b) one-dimensional alignment and (c), (d) three-dimensional alignment[26]

下载图片 查看所有图片

超快光场调控通过诱导分子的转动动力学过程可实现分子取向。分子的取向可分为永久偶极矩与静电场相互作用、诱导偶极矩与非对称场作用及非对称太赫兹(THz)光场作用。Goban等[27]采用缓慢打开、快速关闭调控激光场联合静电场实现OCS分子的动力学取向及在整数个旋转周期的重现,并进一步采用椭圆偏振激光场和类似的方案实现多原子分子的空间三维取向[28];Ghafur等[13]利用静电场六极态选择器联合强飞秒激光场产生处在单一转动量子态的分子并实现取向,结合飞秒激光脉冲整形技术与优化算法,通过整形飞秒激光脉冲有效地提高分子取向程度(如图6所示);De等[29]开展基频与二倍频的飞秒激光双色场方法实现对CO分子的无场分子取向,该方法既不作用于分子的永久偶极矩,又不需要分子取向过程产生转动态激发的激光场为共振激光场,因此具有广泛的使用价值;Fleischer小组[30]开展单周期THz共振激光场诱导OCS分子无场取向的研究,采用单周期及共振的THz激光场,可避免一些与分子取向无关的分子激发过程的干扰作用。

图 6. (a)变换极限脉冲及(b)整形脉冲获得的分子取向,及(c)取向分布;(d)不同条件下得到的分子取向分布;(e)和(f)分别是最优化脉冲作用分子得到的取向和准直演化曲线;(g)最优化激光脉冲的包络形状[13]

Fig. 6. Molecular orientation irradiated by (a) the transform limit pulse and (b) the shaped pulse, and (c) intensity integration of the images; (d) the molecular orientation distribution under different laser conditions; (e), (f) time-dependent evolution (black line and points) and theoretical evolution (red lines); (g) the envelope of the optimal laser pulse[13]

下载图片 查看所有图片

通过调控超快光场诱导分子相干转动激发,可实现分子的单向旋转。为实现分子单向旋转,首先需要打破转动激发的轴对称性,诱导产生非对称性转动态波包,进而实现分子的角动量取向。Karczmarek等[31]理论上提出利用两个反向圆偏振光场的光学离心方法(Optical centrifuge),Villeneuve和Yuan等[32-33]利用该方法在实验上实现Cl2和CO2的单向旋转,并加速旋转分子使转动量子数J高达400。近几年,Kitano和Bloomquist等[34-35]提出分子螺旋桨(Molecular propeller)方法实现苯和N2分子的单向旋转,并认为物理机制是两个激发脉冲产生非对称转动波包之间的量子干涉效应。Korech等[36]提出通过旋转多普勒平移光谱方法观测分子的单向旋转过程,为分子单向旋转的研究提供一种更为直接的研究手段。如图7所示,图7(a)、(d)为只有抽运光作用,即未发生单向旋转,图7(b)、(e)为分子的单向旋转方向与圆偏振探测光旋度相同,光谱发生红移,图7(c)、(f)为分子的单向旋转方向与圆偏振探测光旋度相反,光谱发生蓝移。而在分子单向旋转的应用方面,一些研究组先后利用光离心方法加速旋转HCN分子实现化学键的选择性断裂[37],利用光离心方法相干激发N2O、OCS及CS2等分子到高转动态并通过时间分辨旋转光谱探测势能面[38],并使用扭转的偏振光场诱导手性分子产生不同方向的旋转实现手性鉴别。

图 7. 分子发生单向旋转过程的旋转多普勒平移光谱。(a)、(d)为只有抽运光作用;(b)、(e)为分子的单向旋转方向与圆偏振探测光旋度相同;(c)、(f)为分子的单向旋转方向与圆偏振探测光旋度相反[36]

Fig. 7. Rotating Doppler shift spectra of unidirectional molecular rotation. (a), (d) only pumping light; (b), (e) the rotation directions of unidirectional molecular rotation and probe pulse with circular polarization are the same; (c), (f) the rotation directions of unidirectional molecular rotation and probe pulse with circular polarization are the opposite[36]

下载图片 查看所有图片

3 超快光场对分子解离的研究和操控

超快光场辐照分子可实现化学键的断裂和重组,进一步控制化学反应[39-40]。目前超快强光场中的分子解离过程在物理机制及应用方面依然面临一些问题与巨大挑战。例如,大分子体系解离过程动力学的研究,分子反应控制如何从实验室应用到真正的光化学反应控制。实验上相继观测到质子转移和异构化等各种分子结构和化学键重组现象,为研究分子解离及操控化学反应提供基础,同时利用超快光场的相干特性及调控能够更加直接地操控分子解离,实现对目标分子特定振动态相干激发的同时抑制其他振动态的激发路径,完成分子解离过程中化学键的选择性断裂。这些研究在化学合成及生物制药等方面具有潜在的应用前景。

质子转移和异构化过程是分子在超快光场诱导下的两个常见现象[41-42]。对质子转移和异构化过程的调控研究,有助于认识解离发生前分子内结构的演变,从而打开新的解离通道,还能加深对阳离子化学反应及燃料和能源领域的燃烧反应等理解,典型的例子如乙醛通过质子转移过程异构化生成乙醇。对于丙酮分子的多种同分异构体异构化反应,利用飞秒激光场脉冲整形优化方案开展实验,通过结合双质谱测量实现同分异构体相同解离产物的优化控制[43]。利用脉冲整形方法获得的飞秒激光脉冲序列,实现对环戊酮分子电离解离过程中不同碎片通道产额的优化控制,结合理论对不同解离路径及产物竞争机理进行研究[44]。结合分子准直技术,研究卤代甲烷分子在强飞秒激光作用下解离及质子转移过程的多电子效应,发现母体离子和碎片离子的电离通道存在明显差异,通过控制分子的电离通道可实现分子解离及异构化过程的调控[45-47]

图 8. 少周期脉冲控制(a)乙炔、(b)乙烯和(c)一三丁二烯分子的电离(黑点、灰色方块分别对应单电离和双电离)解离((a)中红点和蓝方块对应CH++ CH+和C2H++H+产物通道,(b)中红点、蓝方块和绿三角形分别对应CH2++CH2+、C2H3++H+和C2H2++H2+产物通道,(c)中红点和蓝方块对应C2H3++C2H3+和CH3++C3H3+产物通道);(d)、(e)分别是乙烯分子解离得到的 CH2+和H2+的离子动量分布;(f)CH2+动能随少周期激光载波包络相位的变化;(g)乙炔 分子单电离、双电离以及解离对应的离子Pz动量分布[48]

Fig. 8. Measured ionization (black spots and gray squares correspond to single and double ionization) and fragmentation ((a) Red dots and blue squares correspond to CH++CH+ and C2H++H+ channels, (b) Red dots, blue squares and green triangles correspond to CH2++CH2+, C2H3++H+ and C2H2++H2+ channels, (c) Red dots and blue squares correspond to C2H3++ C2H3+ and CH3++C3H3+ channels.) yields as a function of CEP for different channels of (a) acetylene, (b) ethylene, and (c) 1,3-butadiene; the measured three-

下载图片 查看所有图片

少周期脉冲激光场及载波包络相位(CEP)稳定技术的发展,为超快光场诱导分子解离过程的控制提供新的调控参数,实现通过调控激光场时域包络与频域相位,及改变CEP对激光场光学振荡周期的调整,达到在分子内电子动力学时间尺度操控分子的解离。近几年国际上多个研究小组开展了这方面的研究。Xie等[48]通过调节激光场的CEP选择性地去除特殊价态电子的重散射能量,实现完全不同于解离通道的选择性控制方法,基于CEP实现电子动力学的操控进而实现对分子碎片化过程的调控过程(如图8所示);Kübel等[49]利用少周期飞秒激光脉冲开展烃类分子的质子转移过程的操控研究,确认出其控制机制为对振动态波包相对相位的相干调控。另外,准直取向依赖的分子解离过程的操控虽然不是基于分子内部结构和化学键的重组过程的控制方法,但是准直取向限定特殊分子集合的空间方向,是对振转态波包的相干调控,一定程度上实现对解离波包的相干调控[50]。因此,在少周期CEP可控的激光场作用下准直取向分子解离研究,不仅有助于对超快光场作用下分子内部结构与电子动力学物理机制的理解,同时也推动阿秒动力学在原子分子物理及化学反应动力学领域的发展。

4 超快光场对原子分子电离的研究和操控

理解超快强激光辐照下原子分子出现的强非线性效应现象(包括多光子电离,阈上电离,非序列双电离及高次谐波产生)及电子的相干动力学具有重要意义,因动力学过程无法用传统的微扰理论来解释并在诸多前沿应用中具有重要价值。对原子分子电离的研究和认识可直接应用于对超快激光场的诊断和控制,超短阿秒极脉冲光源产生及新型超快时间分辨方法的建立与发展。因此,利用超快激光场的调控探索和控制原子分子量子态过程成为量子调控领域的前沿研究方向。

飞秒脉冲光场驱动的阈上电离谱对光脉冲宽度、强度及载波-包络相位等重要光场参量具有极端敏感性,因此逐渐发展起来的激光诱导电子衍射方法[51]与光电子全息术[52],为在阿秒时间尺度和原子级空间尺度上认识原子分子结构及动力学提供重要基础。如图9所示,通过实验测量的阈上电离光电子动量谱分布,可提取出原子分子靶体的电子散射截面[53]。该方法应用在简单双原子分子体系并结合电子衍射原理,从实验测量光电子谱中反演得到分子初态结构,进一步结合了激光诱导电子衍射方法。 利用强场电离产生的超短电子束实时探测分子光解离过程的演化[54-55],并且该方法有望实现对复杂分子超快结构及其演化动力学的原位成像[56]

图 9. (a)超快激光诱导电子衍射实现C6H6分子的结构成像示意图,(b)实验测量得到的电子二维动量分布,(c)实验(黑点)和理论(红线)得到的分子微分散射截面[56]

Fig. 9. (a) Schematic of structural imaging of C6H6 molecules using ultrafast-laser-induced electron diffraction, (b) experimental measured 2D electron momentum distribution, (c) molecular differential scattering cross sections from experiment (black dots) and theory (red line)[56]

下载图片 查看所有图片

在光学长波长极限下原子分子的强场电离会进入深隧穿区域,其中电子偶极效应及电离电子的轨迹都会发生明显变化,重碰撞过程中的内层激发及多电子效应变得更重要,因此中红外波长条件下的原子分子强场电离出现很多新奇现象。如图10所示,在中红外强激光场的原子分子阈上电离实验中[57-58],发现电离产生的光电子能谱在低能端出现令人惊异的峰状新结构。结合半经典轨道理论方法,发现隧穿电子在返回原子核时受长程库仑相互作用被聚焦到激光电场,导致低能电子结构的出现。因此进一步发现比低能结构能量更低的近零能量结构的存在,对近零能量结构产生的物质机制还有待进一步澄清。

图 10. (a)实验测量得到的惰性气体氙原子在不同波长下的阈上电离光电子能谱,插图为完整的电子能谱图;(b)对应的考虑库仑势的强场近似理论计算结果,激光场强度为 8.0×1013 W/cm2;(c)和(d)分别是波长为2000 nm时两个光强(4.0×1013 W/cm2,10.0×1013 W/cm2)下实验测量和理论计算得到的结果;(e)波长为1500 nm时两个光强下实验测量得到的结果[58]

Fig. 10. (a) Experimental measured photoelectron spectra of xenon for above-threshold ionization, the complete spectra are shown in the inset; (b) theoretical calculation results with Coulomb potential for the curves from bottom to top, respectively, the laser intensity is 8.0×1013 W/cm2; (c), (d) experimental and theoretical calculation results with two laser intensities (4.0×1013 W/cm2, 10.0×1013 W/cm2) at the wavelength of 2000 nm); (e) experimental results with two laser intensities at the wavelength

下载图片 查看所有图片

原子分子与飞秒强激光场相互作用,除单电子电离之外还会产生双电离或多次电离,内部的两个电子甚至更多的电子会被剥离出来[59]。研究发现,在一定光强范围内这些电子并不是一个一个有次序地被剥离,实际上在光场驱动下第一个电离出来的电子会返回到核内并发生碰撞导致再次电离,表现在实验测量到的二(多)价离子产量比基于单电子近似的理论模型计算得到的离子产量要高几个量级,这种过程称之为非序列电离,产生的两个电子在动量分布上存在着关联(如图11所示)[60]。非顺序双(多)电离涉及电子之间的关联,其为深入理解强激光驱动原子分子过程中的电子关联效应提供理想研究体系。利用少周期飞秒脉冲的光场瞬态,对电子关联行为加深认识并实现超快控制。例如,研究发现非顺序双电离引起的电子动量关联分布强烈依赖于少周期脉冲宽度及与之紧密关联的载波包络相位[61],表明利用激光载波-包络相位能够在阿秒时间尺度上精确控制双电子电离动力学及电子关联行为。另外,利用双色光场也可实现对非顺序双电离的调控,如通过改变双色圆偏场中两种波长激光的强度比值,调节电子运动轨迹和控制高能电子重散射的概率,可实现对非顺序双电离产率的调制[62-63]

图 11. 激光诱导电子重碰撞得到的电子关联分布。(a)~(d) GSZ模型;(e)~(h)类氦模型;(i)~(l)实验测量结果[60]

Fig. 11. Two-electron joint momentum spectrum induced by laser electron recollision. (a)-(d) GSZ model; (e)-(h) heliumlike model; (i)-(l) measured results[60]

下载图片 查看所有图片

图 12. 椭偏激光作用下Ar原子两个电子电离时间分布,(a)7 fs和(b)33 fs激光作用下第一个电子(蓝色)和第二个电子(绿色)的电离时间,图中蓝线是理论计算第一个电子的电离时间,红线、绿线、黑色虚线以及点划线是不同理论方法计算得到的第二个电子的电离时间;(c)和(d)是得到的两个电子在激光场中的亚周期电离延迟分布[64]

Fig. 12. Ionization time of two electrons from Ar atoms irradiated by elliptical polarized laser, the ionization time of the first electron (blue) and the second electron (green) under (a) 7 fs and (b) 33 fs laser. The blue line in the figure is the theoretical calculation of the ionization time of the first electron, and the red, green, black dotted and black dash-dotted lines are the ionization time of the second electron calculated by different theoretical methods; (c) and (d) are the two electrons io

下载图片 查看所有图片

图 13. 椭偏光下原子磁量子数对强场电离的影响。(a)、(b)、(c)给出的是m=-1时在椭偏光下隧穿电离示意图、电子初始动量及电子末态动量分布;(d)、(e)、(f)给出的是m=1时对应的结果[67]

Fig. 13. Influence of atomic magnetic quantum number (m) on strong field ionization irradiated by elliptical polarized laser. The distributions of tunneling ionization diagram (a), electron initial momentum (b) and electron final state momentum (c) with m=-1. The distributions of tunneling ionization diagram (d), electron initial momentum (e) and electron final state momentum (f) with m=1[67]

下载图片 查看所有图片

在原子序列双电离方面,Pfeiffer等[64]利用圆偏振少周期光场构成的阿秒钟(Attoclock)方法研究序列双电离过程中电子电离时间问题。如图12所示,通过电子符合测量及电离过程中第一个电子和第二个电子动量的大小和角度获取,得到两个电子在序列电离区分别的电离时间及超快强激光下原子双电离的延迟时间,并提供一个能够测量原子分子在序列区电离延迟的方案。Winney等[65]将该方法拓展到复杂分子的研究过程中,发现苯分子在圆偏振激光作用下双电离过程包含非序列电离和序列电离两种电离机制,并且双电离概率在第一个电子电离500 as后会大大增加,此时电离的两个电子夹角比较小。该方法还被用来研究H2分子在序列电离过程产生库仑爆炸通道对电子的影响,结合分子坐标系下的电子分布测量发现解离的离子对电子动量分布也有非常重要的影响,并能够获得亚周期的电离动力学对解离的影响和贡献[66]

随着研究的深入,发现序列电离的电子之间也存在着某种联系而并非完全独立,这种关系可以建立在电子电离后离子态的演化上,离子态的自旋分布上及分子诱导偶极振荡上,也可以建立在电子-电场相互作用上。如图13所示,实验观察到,当两束相同且相反旋度的圆偏振激光作用原子时,其电离概率及电子动量分布会出现较大的差别,主要是由于原子中不同磁量子数的电子在不同旋度的激光作用下电离概率和初始动量分布会有较大的差异[67]。通过原子分子本身属性及光场超快演化建立起的关联,虽然和非序列双电离过程中的库仑强关联有明显的差异,但其为理解电离之前的关联和演化作用提供更深入的信息并为电子态的相干控制提供新的方案。近些年发展的先进实验方法和精确理论计算打开了认识强场原子分子物理量子态演化和操控的重要的窗口,并提供新的机遇,深入认识原子分子量子态的超快演化及其调控对于崭新的阿秒科学发展是非常有意义的。

5 总结

超快强激光技术的发展尤其是啁啾脉冲放大技术的发明使激光的功率密度得到巨大的提高,可以达到1015~1022 W/cm2。这种场强范围已经涵盖从强场物理到相对论效应研究的整个区域,涉及到原子分子物理、光物理、等离子体物理、核物理及天体物理等众多的领域。本文详细介绍强场原子分子物理研究领域中分子在超快光场中的转动及解离,原子分子的电离及调控过程。强场原子分子物理经过30多年的研究,取得令人瞩目的成绩,不仅深化对强激光与物质相互作用及物理机制的认识,还直接推动一些新技术与新学科(如阿秒光脉冲产生与阿秒科学)的诞生与发展。深入认识和理解原子分子在激光场中的超快量子调控,对实现物理、化学和生物过程精确的量子调控并开拓量子调控在化学、能源、信息及生物等领域的应用极为重要。

参考文献

[1] Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 1985, 55(6): 447-449.

[2] Gaumnitz T, Jain A, Pertot Y, et al. Streaking of 43-attosecond soft-X-ray pulses generated by a passively CEP-stable mid-infrared driver[J]. Optics Express, 2017, 25(22): 27506-27518.

[3] Batysta F, Antipenkov R, Borger T, et al. Spectral pulse shaping of a 5 Hz, multi-joule, broadband optical parametric chirped pulse amplification frontend for a 10 PW laser system[J]. Optics Letters, 2018, 43(16): 3866-3869.

[4] Popmintchev T, Chen M C, Popmintchev D, et al. Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers[J]. Science, 2012, 336(6086): 1287-1291.

[5] Brixner T, Krampert G, Pfeifer T, et al. Quantum control by ultrafast polarization shaping[J]. Physical Review Letters, 2004, 92(20): 208301.

[6] Fleischer A, Kfir O, Diskin T, et al. Spin angular momentum and tunable polarization in high-harmonic generation[J]. Nature Photonics, 2014, 8(7): 543-549.

[7] Drescher M, Hentschel M, Kienberger R, et al. Time-resolved atomic inner-shell spectroscopy[J]. Nature, 2002, 419(6909): 803-807.

[8] Schultze M, Fiess M, Karpowicz N, et al. Delay in photoemission[J]. Science, 2010, 328(5986): 1658-1662.

[9] Pertot Y, Schmidt C, Matthews M, et al. Time-resolved X-ray absorption spectroscopy with a water window high-harmonic source[J]. Science, 2017, 355(6322): 264-267.

[10] Attar A R, Bhattacherjee A, Pemmaraju C D, et al. Femtosecond X-ray spectroscopy of an electrocyclic ring-opening reaction[J]. Science, 2017, 356(6333): 54-59.

[11] Stapelfeldt H, Seideman T. Colloquium: aligning molecules with strong laser pulses[J]. Reviews of Modern Physics, 2003, 75(2): 543.

[12] Holmegaard L, Nielsen J H, Nevo I, et al. Laser-induced alignment and orientation of quantum-state-selected large molecules[J]. Physical Review Letters, 2009, 102(2): 023001.

[13] Ghafur O, Rouzée A, Gijsbertsen A, et al. Impulsive orientation and alignment of quantum-state-selected NO molecules[J]. Nature Physics, 2009, 5(4): 289-293.

[14] Bertrand J B, Worner H J, Salières P, et al. Linked attosecond phase interferometry for molecular frame measurements[J]. Nature Physics, 2013, 9(3): 174-178.

[15] Pavicic D, Lee K F, Rayner D M, et al. Direct measurement of the angular dependence of ionization for N2, O2, and CO2 in intense laser fields[J]. Physical Review Letters, 2007, 98(24): 243001.

[16] Yang J, Beck J, Uiterwaal C J, et al. Imaging of alignment and structural changes of carbon disulfide molecules using ultrafast electron diffraction[J]. Nature Communications, 2015, 6: 8172.

[17] Leibscher M, Averbukh I S, Rabitz H. Molecular alignment by trains of short laser pulses[J]. Physical Review Letters, 2003, 90(21): 213001.

[18] Bisgaard C Z, Poulsen M D, Peronne E, et al. Observation of enhanced field-free molecular alignment by two laser pulses[J]. Physical Review Letters, 2004, 92(17): 173004.

[19] Underwood J G, Spanner M, Ivanov M Y, et al. Switched wave packets: a route to nonperturbative quantum control[J]. Physical Review Letters, 2003, 90(22): 223001.

[20] Hertz E, Rouzee A, Guerin S, et al. Optimization of field-free molecular alignment by phase-shaped laser pulses[J]. Physical Review A, 2007, 75(3): 031403.

[21] Suzuki T, Sugawara Y, Minemoto S, et al. Optimal control of nonadiabatic alignment of rotationally cold N2 molecules with the feedback of degree of alignment[J]. Physical Review Letters, 2008, 100(3): 033603.

[22] Luo S Z, Zhu R H, He L H, et al. Nonadiabatic laser-induced orientation and alignment of rotational-state-selected CH3Br molecules[J]. Physical Review A, 2015, 91(5): 053408.

[23] Luo S Z, Hu W H, Yu J Q, et al. Rotational dynamics of quantum state-selected symmetric-top molecules in nonresonant femtosecond laser fields[J]. The Journal of Physical Chemistry A, 2017, 121(4): 777-783.

[24] Larsen J J, Hald K, Bjerre N, et al. Three dimensional alignment of molecules using elliptically polarized laser fields[J]. Physical Review Letters, 2000, 85(12): 2470.

[25] Lee K F, Villeneuve D M, Corkum P B, et al. Field-free three-dimensional alignment of polyatomic molecules[J]. Physical Review Letters, 2006, 97(17): 173001.

[26] Viftrup S S, Kumarappan V, Trippel S, et al. Holding and spinning molecules in space[J]. Physical Review Letters, 2007, 99(14): 143602.

[27] Goban A, Minemoto S, Sakai H. Laser-field-free molecular orientation[J]. Physical Review Letters, 2008, 101(1): 013001.

[28] Takei D, Mun J H, Minemoto S, et al. Laser-field-free three-dimensional molecular orientation[J]. Physical Review A, 2016, 94(1): 013401.

[29] De S, Znakovskaya I, Ray D, et al. Field-free orientation of CO molecules by femtosecond two-color laser fields[J]. Physical Review Letters, 2009, 103(15): 153002.

[30] Fleischer S, Zhou Y, Field R W, et al. Molecular orientation and alignment by intense single-cycle THz pulses[J]. Physical Review Letters, 2011, 107(16): 163603.

[31] Karczmarek J, Wright J, Corkum P, et al. Optical centrifuge for molecules[J]. Physical Review Letters, 1999, 82(17): 3420.

[32] Villeneuve D M, Aseyev S A, Dietrich P, et al. Forced molecular rotation in an optical centrifuge[J]. Physical Review Letters, 2000, 85(3): 542.

[33] Yuan L, Teitelbaum S W, Robinson A, et al. Dynamics of molecules in extreme rotational states[J]. Proceedings of the National Academy of Sciences, 2011, 108(17): 6872-6877.

[34] Kitano K, Hasegawa H, Ohshima Y. Ultrafast angular momentum orientation by linearly polarized laser fields[J]. Physical Review Letters, 2009, 103(22): 223002.

[35] Bloomquist C, Zhdanovich S, Milner A A, et al. Directional spinning of molecules with sequences of femtosecond pulses[J]. Physical Review A, 2012, 86(6): 063413.

[36] Korech O, Steinitz U, Gordon R J, et al. Observing molecular spinning via the rotational Doppler effect[J]. Nature Photonics, 2013, 7(9): 711-714.

[37] Hasbani R, Ostojic B, Bunker P R, et al. Selective dissociation of the stronger bond in HCN using an optical centrifuge[J]. The Journal of Chemical Physics, 2002, 116(24): 10636-10640.

[38] Milner A A, Korobenko A, Hepburn J W, et al. Probing molecular potentials with an optical centrifuge[J]. The Journal of Chemical Physics, 2017, 147(12): 124202.

[39] Wells E, Rallis C E, Zohrabi M, et al. Adaptive strong-field control of chemical dynamics guided by three-dimensional momentum imaging[J]. Nature Communications, 2013, 4: 2895.

[40] Alnaser A S, Kubel M, Siemering R, et al. Subfemtosecond steering of hydrocarbon deprotonation through superposition of vibrational modes[J]. Nature Communications, 2014, 5: 3800.

[41] Ma P, Wang C C, Li X K, et al. Ultrafast proton migration and Coulomb explosion of methyl chloride in intense laser fields[J]. The Journal of Chemical Physics, 2017, 146(24): 244305.

[42] Jiang Y H, Rudenko A, Herrwerth O, et al. Ultrafast extreme ultraviolet induced isomerization of acetylene cations[J]. Physical Review Letters, 2010, 105(26): 263002.

[43] Chen Z, Tong Q N, Zhang C C, et al. Identification of isomers and control of ionization and dissociation processes using dual-mass-spectrometer scheme and genetic algorithm optimization[J]. Chinese Physics B, 2015, 24(4): 043303.

[44] Song Y D, Chen Z, Yang X, et al. Control of the photoionization/photodissociation processes of cyclopentanone with trains of femtosecond laser pulses[J]. Chinese Physics B, 2013, 22(10): 103301.

[45] Luo S Z, Hu W H, Yu J Q, et al. Multielectron effects in the strong field sequential ionization of aligned CH3I molecules[J]. The Journal of Physical Chemistry A, 2017, 121(35): 6547-6553.

[46] Luo S Z, Zhou S S, Hu W H, et al. Multiorbital effects in strong-field ionization and dissociation of aligned polar molecules CH3I and CH3Br[J]. Physical Review A, 2017, 96(6): 063415.

[47] Luo S Z, Zhou S S, Hu W H, et al. Identifying the multielectron effect on chemical bond rearrangement of CH3Cl molecules in strong laser fields[J]. The Journal of Physical Chemistry A, 2018, 122(43): 8427-8432.

[48] Xie X H, Doblhoff-Dier K, Roither S, et al. Attosecond-recollision-controlled selective fragmentation of polyatomic molecules[J]. Physical Review Letters, 2012, 109(24): 243001.

[49] Kubel M, Siemering R, Burger C, et al. Steering proton migration in hydrocarbons using intense few-cycle laser fields[J]. Physical Review Letters, 2016, 116(19): 193001.

[50] Doblhoff-Dier K, Kitzler M, Grafe S. Theoretical investigation of alignment-dependent intense-field fragmentation of acetylene[J]. Physical Review A, 2016, 94(1): 013405.

[51] Zuo T, Bandrauk A D, Corkum P B. Laser-induced electron diffraction: a new tool for probing ultrafast molecular dynamics[J]. Chemical Physics Letters, 1996, 259(3/4): 313-320.

[52] Huismans Y, Rouzee A, Gijsbertsen A, et al. Time-resolved holography with photoelectrons[J]. Science, 2011, 331(6013): 61-64.

[53] Ray D, Ulrich B, Bocharova I, et al. Large-angle electron diffraction structure in laser-induced rescattering from rare gases[J]. Physical Review Letters, 2008, 100(14): 143002.

[54] Blaga C I, Xu J L, Dichiara A D, et al. Imaging ultrafast molecular dynamics with laser-induced electron diffraction[J]. Nature, 2012, 483(7388): 194-197.

[55] Wolter B, Pullen M G, Le A T, et al. Ultrafast electron diffraction imaging of bond breaking in di-ionized acetylene[J]. Science, 2016, 354(6310): 308-312.

[56] Ito Y, Wang C C, Le A T, et al. Extracting conformational structure information of benzene molecules via laser-induced electron diffraction[J]. Structural Dynamics, 2016, 3(3): 034303.

[57] Blaga C I, Catoire F, Colosimo P, et al. Strong-field photoionization revisited[J]. Nature Physics, 2009, 5(5): 335-338.

[58] Quan W, Lin Z, Wu M, et al. Publisher’s note: classical aspects in above-threshold ionization with a midinfrared strong laser field [Phys.Rev.Lett.103,093001(2009)][J]. Physical Review Letters, 2009, 103(11): 119901.

[59] Becker W, Liu X J, Ho P J, et al. Theories of photoelectron correlation in laser-driven multiple atomic ionization[J]. Reviews of Modern Physics, 2012, 84(3): 1011.

[60] Li X K, Wang C C, Yuan Z Q, et al. Footprints of electron correlation in strong-field double ionization of Kr close to the sequential-ionization regime[J]. Physical Review A, 2017, 96(3): 033416.

[61] Bergues B, Kubel M, Johnson N G, et al. Attosecond tracing of correlated electron-emission in non-sequential double ionization[J]. Nature Communications, 2012, 3: 813.

[62] Mancuso C A, Dorney K M, Hickstein D D, et al. Controlling nonsequential double ionization in two-color circularly polarized femtosecond laser fields[J]. Physical Review Letters, 2016, 117(13): 133201.

[63] Eckart S, Richter M, Kunitski M, et al. Nonsequential double ionization by counterrotating circularly polarized two-color laser fields[J]. Physical Review Letters, 2016, 117(13): 133202.

[64] Pfeiffer A N, Cirelli C, Smolarski M, et al. Timing the release in sequential double ionization[J]. Nature Physics, 2011, 7(5): 428-433.

[65] Winney A H, Lee S K, Lin Y F, et al. Attosecond electron correlation dynamics in double ionization of benzene probed with two-electron angular streaking[J]. Physical Review Letters, 2017, 119(12): 123201.

[66] Spanner M, Grafe S, Chelkowski S, et al. Coulomb asymmetry and sub-cycle electron dynamics in multiphoton multiple ionization of H2[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2012, 45(19): 194011.

[67] Eckart S, Kunitski M, Richter M, et al. Ultrafast preparation and detection of ring currents in single atoms[J]. Nature Physics, 2018, 14(7): 701-704.

罗嗣佐, 陈洲, 李孝开, 胡湛, 丁大军. 超快飞秒激光场中原子分子量子态调控[J]. 光学学报, 2019, 39(1): 0126007. Sizuo Luo, Zhou Chen, Xiaokai Li, Zhan Hu, Dajun Ding. Controlling Quantum States of Atoms and Molecules by Ultrafast Femtosecond Laser Fields[J]. Acta Optica Sinica, 2019, 39(1): 0126007.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!