光学学报, 2021, 41 (8): 0823003, 网络出版: 2021-04-10   

二维半导体微纳光腔中光与物质的耦合 下载: 2163次特邀综述

Light-Matter Coupling of Two-Dimensional Semiconductors in Micro-Nano Optical Cavities
刘晓泽 1,2张馨元 1,2张顺平 1,2管志强 1,2徐红星 1,2,3,*
作者单位
1 武汉大学物理科学与技术学院, 湖北 武汉 430072
2 武汉大学人工微结构教育部重点实验室, 湖北 武汉 430072
3 武汉大学高等研究院, 湖北 武汉 430072
摘要
二维半导体具有独特的二维材料属性、新奇的谷电子能带结构和丰富的调控自由度,为凝聚态物理、光学等领域的研究带来了机遇。然而,这些研究依然存在许多根本问题,例如光的利用效率低、量子特性易受环境扰动等。将二维半导体和精密微纳光腔进行耦合不仅为这些问题的解决提供了合适的方案,还展现了前所未有的新颖光学效应,从而为二维半导体的基础物理研究和光电应用开拓了新的研究方向。对近10年来微纳光腔中二维半导体中的光与物质耦合的研究进展进行梳理,重点讨论了二维半导体的光学特性,以及二维半导体与微纳光腔的不同耦合区域的研究进展、调控机制及其在纳米激光光源、谷电子学、量子光学等方面的潜在应用,并对未来的发展方向和机遇进行展望。
Abstract
Two dimensional (2D) semiconductors have unique 2D material properties, novel valley electron energy band structure, and abundant regulatory degree of freedom, which bring opportunities for the research of condensed matter physics, optics, and other fields. However, these studies still have many fundamental problems, such as low efficiency of light utilization and susceptibility to environmental disturbance of quantum properties. The coupling of two-dimensional semiconductors and precision micro-nano optical cavities not only provides a suitable solution for these problems, but also exhibits unprecedented and novel optical effects, thus opening up new research directions for the basic physical research and optoelectronic applications of 2D semiconductors. The research progress of light-material coupling of 2D semiconductors in micro-nano optical cavities in the past 10 years is reviewed. This paper also focuses on the optical properties of 2D semiconductors, the research progress and control mechanism of different coupling regions between the 2D semiconductor and micro-nano optical cavity, and its potential applications in nano laser source, valley electronics, quantum optics, etc. The future development direction and opportunities are also prospected.

1 引言

当光被限制在一个密闭盒子里的时候,很多现象不能仅通过光的经典电磁理论来解释,往往还需要结合光腔量子电动力学(CQED)[1]。这里,可以限制光的密闭盒子就是光腔,而这种限制作用一般都是由光的波动属性导致的。最直观的光腔就是在一个光腔的边界上构建光的反射镜面,从而使光只能被束缚在有限的空间内。根据具体的边界条件和光波的干涉作用,光腔能形成光波的谐振模式(即腔模),从而对特定波长的光波具有特别强的限制作用。当光腔中活性发光介质的辐射波长和腔模谐振波长形成共振时,腔系统中可以发生CQED所描述的光与物质的耦合现象,这会带来很多经典电磁理论以外的新奇光物理[1]

CQED最开始的目的是通过对光腔模和原子耦合的量子化描述来构建相应的物理模型[1]。当原子作为活性发光介质的时候,它们的量子特征是明确且清晰的,受到其他环境因素引起的物理扰动较少,所以基于原子光腔体系的CQED物理模型对其他的光腔系统也都具有重要的参照性[1-3]。在这些新兴的光腔体系中,随着半导体材料科学和微纳加工技术的发展,半导体光腔的研究受到众多研究学者的关注[3-7],CQED也从最初的原子光腔体系逐渐拓展到半导体光腔体系。在CQED物理模型的框架下,利用半导体光腔还可实现对具体材料属性、微观粒子(例如掺杂载流子和声子等)和介质环境的调控作用,这进一步丰富了基础物理研究内容[3-7]。另外,半导体微纳加工的工业技术也可以和这些光腔系统紧密结合起来,使半导体光腔系统的实际工业应用成为可能。

二维半导体光腔中光与物质的耦合拓展了半导体光腔体系研究。传统的半导体光腔体系在过去的二三十年里也获得了长足的发展,展示出了丰富的物理内涵和广阔的应用前景[3-7]。近10年来,二维半导体又在这些传统体系的基础上带来了一些新奇的调控自由度和前所未有的物理特性[8-11]。基于上述原因,本文将主要总结近年来二维半导体用于光与物质的耦合方面的研究进展。

2 二维半导体的光学特性

二维材料是由少数几个原子层乃至单个原子层的层状材料组成的[12]。这些层状材料的层内原子通过很强的化学键结合,层间原子则通过较弱的范德瓦耳斯力结合[12]。由于层间的弱相互作用,这些层状材料可以通过机械剥离块体或者化学气相沉积(CVD)形成大面积的二维材料[13-16]。同样,其层间的弱相互作用的缺失也改变了电子能带以及相关的光电性质[12,16-17]

2.1 单层二维半导体

二维半导体的发现离不开研究人员早期对单层石墨烯的研究。通过机械剥离首次发现的单层石墨烯带来了二维材料研究的全面发展[18-19]。和块体石墨不同,石墨烯的六边形布里渊区形成特殊的狄拉克锥的电子能带,从而展示出了从未有过的电子输运和光电特性[20-22]。这个突破性的发现也使英国的两位物理学家Andre Geim和Konstantin Novoselov被授予2010年诺贝尔物理学奖[23-24]。同一年,和石墨烯具有类似的蜂窝晶格和层状结构的二维半导体也被发现[12,25-26]。这些二维半导体以层状过渡金属二硫化物(TMD)为典型,往往具有MX2的化学式,其中过渡金属M的代表有钼(Mo)和钨(W),硫族元素X的代表有硫(S)、硒(Se)和碲(Te)[13,16-17],如图1(a)所示。根据类似的方法,单层TMD通常经过机械剥离块体或者CVD制成[13,15,27-31]。同样由于层间弱相互作用的缺失,TMD半导体的电子能带会由块体的间接带隙变成单层的直接带隙,从而使得电子在带隙间的跃迁效率提升了4个数量级以上[25-26,32]。同时由于特殊的谷能带结构和空间反演对称性破缺,二维半导体TMD展现出了前所未有的光学特性和研究前景[9,33-35]

二维半导体的光学特性[13,36-38]主要体现在激子物理特性和非线性光学响应两方面。激子一般是激发态的电子空穴对通过库仑力束缚在一起的复合粒子。由于单原子层的量子束缚作用,二维激子的束缚能达到500 meV左右,其在室温热扰动(≈25 meV)的环境下依然能维持稳定的激子特性[32,39-41]。同时,这些二维激子的直接带隙的跃迁具有非常大的振子强度,使得单个原子层的光吸收达到15%以上[9,32,42]。在高束缚能和振子强度的作用下,二维激子在类氢原子模型下还可以形成实验上可观测的Rydberg精细能级,这预示了二维激子丰富的量子特性[39-41]。更加独特的是,二维激子还引入了一个新的谷自由度[33-36,43-44]。二维TMD具有蜂窝形晶格,其对应的正六边形布里渊区里有两个具有时间反演对称性的K和K'点[33-35]。二维半导体的直接带隙正好处在这两个对称点上,形成简并的谷能带结构[33-35],如图1(b)所示。在这种情况下,根据角动量守恒定则,在K和K'上形成的二维激子具有截然不同的选择定则:在K点上的激子只能被左旋的圆偏振光激发,复合的荧光也会带有左旋的圆偏振性;同理,在K'点上的激子只能和右旋的圆偏振光耦合[33-35]。这种谷能带的圆偏振光选择性为二维激子带来了一个类似自旋的谷自由度,这是激子研究中发现的新自由度。

值得注意的是,除了这些激子的物理特性,二维半导体还具有丰富的非线性光学响应,如图1(c)所示。在单层TMD常见的2H相六边形蜂窝形晶格中,MX两种不同的元素打破了空间反演对称性,直接造就了它们很大的二次谐波(SHG)响应[37,45-49]。当二次谐波与二维激子发生能量共振,SHG的强度得到几个数量级的增强,根据谷自由度,SHG具有反转圆偏振光旋光性的新光学选择定则[49-50]。此外,根据二维激子的Rydberg能级,二维半导体也展示出了带有谷自由度的双光子吸收(TPA)特性[40,50-52]。这些在单个原子层上的非线性光学响应为非线性光学应用提供了新可能[53-54]

图 1. 二维半导体的基本特性示意图。(a)过渡金属二硫化物的原子组成结构示意图[13];(b)上图:单分子层MoS2的三角棱柱状结构,蜂窝晶格结构;下图:简并态(K和K')的谷能带六边形结构和谷能带跃迁选择定则[36];(c)单层TMD六边晶格的2H相,以及空间反演对称性破缺下的二次谐波(SHG)响应 [37];(d)二维材料缺陷态的单光子特性原理图[38]

Fig. 1. Schematics for some fundamental properties of 2D semiconductors. (a) Schematic of atomic structure of TMD MX2[13]; (b) upper: triangular prismatic structure and honeycomb lattice structure of monolayer MoS2; lower: hexagonal structure of valley band of degenerate states (K and K') and selection rule of valley band transition[36]; (c) 2H phase of monolayer TMD hexagonal lattice and SHG under symmetry breaking of spatial inversion[37]; (d) schematic of single photon properties of defect states in 2D materials[38]

下载图片 查看所有图片

二维半导体还是非常重要的单光子源宿主。单光子源是现在量子光学的核心元素,也于近期被发现存在于二维材料中的某些缺陷态[55-60],如图1(d)所示。例如在二维TMD中,低温条件下发现的一些未知来源的缺陷态表现出了单光子的特性[55-59]。这些单光子源能直接被TMD的材料特性所影响,其量子特性可以和谷自由度以及相干的声子耦合,呈现了二维半导体单光子源的一些独特的调控性能[61-62]。研究人员在二维氮化硼中更是发现了某些缺陷态在室温条件下的单光子特性[60]。这些缺陷态的来源也于近期逐步得到更清晰的认识[38,63]。此外,最近的一些研究还表明,这些单光子源的缺陷态可以通过一些微纳加工的手段被人为制作出来[64-69]。尽管目前二维半导体单光子源的量子特性和传统的固体量子光源相比还有很多问题需要解决,但是二维半导体宿主的特殊性质预示了其在量子芯片应用方面的巨大潜力[70]

2.2 二维半导体光学的外场调控

根据二维半导体的几何特性和关键的物理参数,上述的光学特性也可以通过外部条件来调控。目前常用的调控手段主要包括外加电场/载流子掺杂、外加磁场和外加超快光场等。这些调控手段可以直接作用在激子或晶体结构上,从而为二维半导体的应用提供了更多可能性[9,71]

二维半导体中最直接有效的调控方法是外加电场。由于低维的量子束缚作用和二维半导体中多余的载流子(以多余电子为主)的存在,二维半导体中很容易形成带电激子[即激子和多余的一个电子(或空穴)束缚在一起的准粒子[72-73]],在特定条件下也能形成双激子(即两个电子和两个空穴束缚在一起的准粒子[74])。当将二维半导体置于门电压器件中,外加门电压可以直接改变二维半导体中的载流子浓度,从而改变了激子、带电激子[72-73]和双激子[75-78]的相关特性,如图2(a)所示。此外二维半导体的SHG也和激子和带电激子的共振频率相关,因此,门电压也能直接调制SHG[49],如图2(b)所示。而在更大的电场密度条件下,门电压还可以改变二维半导体的晶格相,从而对SHG产生更大的调控作用[79]

图 2. 二维半导体的光学调控。(a)带电激子和激子X0的荧光峰值(PL)强度与门电压Vg的关系[72],实线为理论预设的模型曲线;(b)通过门电压对SHG共振强度进行电调控[49];(c)简并态的谷电子能带在磁场下的塞曼效应示意图[80];(d)简并态的谷电子能带在超快光场的斯塔克效应示意图[81]

Fig. 2. Optical control for 2D semiconductors. (a) Relationship between PL intensity of charged exciton and exciton X0 and gate voltage Vg[72]. Solid line is model curve predetermined by theory; (b) electrical control of SHG resonance intensity with gated voltage[49]; (c) schematic of Zeeman effect under magnetic field for degenerate valley electronic energy band[80]; (d) schematic of Stark effect under ultrafast optical field for degenerate valley electronic energy band[81]

下载图片 查看所有图片

二维半导体中的谷能带结构也给外加磁场带来了调制的空间。在谷能带的K和K'点,形成激子的电子和空穴具有相反的自旋度,谷激子的简并态在磁场条件下可以被打破,产生明显的塞曼效应[80,82-83],如图2(c)所示。塞曼效应还可以进一步对谷的光学相干性进行调控[84-85],也可以作用于激子的多体复杂态上,如带电激子[86]和双激子[87-88],这为谷电子学应用提供了新的方法。根据类氢原子模型,激子不同的Rydberg精细能级有不同的磁场依赖度,从而具有精确的磁场调控度[89-90]。此外,外加磁场还可以点亮二维半导体的暗激子[91-92],同时对多个不同种类的激子起到调控作用。

另外,二维半导体的激子也对外加超快光场有非常灵敏的响应。和塞曼效应相似,谷激子的简并态在超快光场中被打破,产生斯塔克效应[81,93],如图2(d)所示。斯塔克效应可以调控谷的光学相干性[94],同样可作用于激子的精细能级[95-96]和激子的多体复杂态上[97]

2.3 二维半导体异质结最新的光学进展

多个单层半导体堆叠而成的异质结在近期报道中展现出很多新奇的光学现象,逐渐变成了近期探索研究的重点[98-100]。由于层间的弱范德瓦耳斯力,单层TMD之间可以自由地互相堆叠[100]。在两两堆叠的TMD异质结中,两种半导体的第二类型的能带排列使得在激发态的电子扩散到导带能量较低的半导体中,激发态的空穴则流向价带能量较高的半导体中,形成空间上横跨两个单层的间接激子[98-99,101-102],如图3(a)所示。这种间接激子由于电子和空穴在层间分离,它们的振子强度往往会远低于单层面内直接激子的振子强度,荧光寿命也会远大于直接激子的寿命[98-99,101-102]。与此同时,层间的间接激子还可以形成永久的朝向面外的电偶极矩,这些电偶极矩还具有互斥的相互作用[103]。根据这些特点,间接激子为研究玻色爱因斯坦凝聚(BEC)和超流体的多体量子物理现象提供了全新的平台[104-105]

图 3. 二维异质结的基本特征。(a)Ⅱ型异质结能带排布示意图, 放大图表示空间间接层间激子示意图[98];(b)二维异质结对层间扭曲角极度依赖的莫尔晶格示意图

Fig. 3. Fundamental features of 2D heterostructures. (a) Configuration of energy band of type-II heterostructures. Magnified image depicts spatially indirect interlayer exciton[98]; (b) schematic of twist angle-dependent Moiré lattice in 2D heterostructures

下载图片 查看所有图片

在这些异质结的探索研究中,莫尔晶格中激子(简称莫尔激子)展现了一个新奇特性,预示了这个方向上空前的研究广度和深度[106-111]。如图3(b)所示,对层间扭曲角和异质结的晶格常数差异高度依赖的莫尔晶格,直接决定了莫尔激子新颖的光谱特性和独特的光学选择定则等量子特性,这预示了莫尔晶格的量子调控研究的深远意义[106-107]。目前,虽然莫尔激子的光学研究已经展现了量子束缚作用下的光谱特性[108-111]和一些激子动力学过程[112],但是莫尔激子的研究还处于相对初步的阶段,莫尔晶格精确的量子束缚作用图像和相应的多体物理问题还有待深入研究[106-107]

3 微纳光腔以及耦合效应

尽管二维半导体有着非常丰富和独特的光学属性,但是要深入地开展对这些光学性质的基础研究和相关的应用开发离不开一个核心的研究方法,即通过CQED来增强和控制二维半导体中光与物质的相互作用[10-11,113-115]。二维半导体具有低维属性,能与之耦合的光腔也往往需要达到微纳尺度。接下来将主要介绍近些年来相关研究中的微纳光腔以及它们中光与物质的耦合效应。

3.1 微纳光腔介绍

随着20世纪后期纳米技术的蓬勃发展,光腔也逐渐走向更加精准的微纳尺度。传统的光腔一般为几百微米,这种光学腔通常为Fabry-Perot(FP)光腔。然而近些年的研究进展中光腔形式逐渐变得多种多样,可控制的尺度也逐渐精确到纳米。判断光腔特性的参数主要有两个:品质因子(Q)和腔模体积(V)。品质因子(Q=ωcavω)是共振频率(ωcav)和频率带宽Δω的比值,代表了单位时间里腔储蓄能量的损耗;腔模体积V=∫Vε(r) E(r)2d3r/max[ε(r)E(r)2]是能量在腔体积的积分和最大能量值的比值,代表了腔体积对能量的束缚作用[6],其中ε(r)为介电函数,E(r)为空间电场。对很多的具体研究来说,更高的Q和更小的V可以进一步增强腔中光与物质的相互作用[6]

根据光的反射折射等经典特性,组成光腔的主要形式包括微纳尺度的FP腔、微米尺度的回音壁(WGM)腔、纳米尺度的光子晶体腔(PCC)[6],如图4(a)~(c)所示。FP腔是由两面正对的反射镜加中间的介质层构成,这种结构可以使得光在腔中经过多次干涉增强而形成腔光子。然而这种腔的本质决定其厚度一般是共振波长的半整数倍(nλ/2),通常在微米尺度。FP微腔的Q和反射镜的反射率成正比,在发展比较成熟的反射镜材料中,Q值一般都可以达到104以上。然而FP腔的V一般比较大,可以采用微纳刻蚀的方法将其加工成纳米柱以减小FP腔的V[116];另一种WGM腔类似于声学中的回音壁。光沿着结构边界内壁传播时会发生连续的全反射,光被限制在环形边界内,从而产生类似的光学回音壁模式。这种环形结构被称为WGM光学微腔,通常可以在介质微球、微盘或微环中实现。相比于FP腔,WGM腔具有超高的Q,其值甚至可以达到108以上[6,117],但是它们的V相对来说比较大。第三种形式是PCC,它大多是通过在光子晶体中引入各种缺陷(如点缺陷、线缺陷等)形成的纳腔。光子晶体一般是由波长量级的周期性光子结构组成的。与凝聚态的电子结构类似,光子晶体可以产生很强的光子局域效应[118]。PCC就是这种光场局域下由缺陷态形成的光学模式,一般Q在105~107之间,V很小,可以达到波长的三次方(λ/n)3量级[6,119]。此外,光子晶体的连续区束缚(简称BIC)态的PCC最近也得到很多关注[120-124],如图4(d)所示。尽管V相对较大,但是PCC具有特别高的Q(>109)和光学拓扑性[123-125]

图 4. 不同微纳光腔的结构示意图。(a)由两个分布式布拉格反射镜(DBR)构成的FP光腔示意图;(b)环形全反射形成的WGM腔示意图;(c)光子晶体缺陷态纳腔PCC示意图[6];(d) BIC态PCC腔示意图[122];(e)等离激元纳腔示意图[126]

Fig. 4. Schematics of various micro/nano-cavities. (a) Schematic of FP optical cavity with two DBRs; (b) schematic of WGM cavity formed by total reflection along ring perimeter; (c) schematic of PCC with photonic crystal defect nanocavity[6]; (d) schematic of PCC of BIC mode[122]; (e) schematic of plasmonic nanocavity[126]

下载图片 查看所有图片

表面等离激元模式构建的纳腔也是目前光腔研究的重点之一。表面等离激元是由光场驱动的金属电子集体振荡产生的,可以引起近场增强,因而可以形成极小的模体积[V≪(λ/n)3]。根据具体的金属几何结构,表面等离激元的近场区域可以被压缩到亚波长尺度的急剧增强区域,形成一些远小于共振波长的纳腔[126-130]。如图4(e)所示,等离激元纳腔及其紧凑的V可以比(λ/n)3还小3~4个数量级[130]。等离激元纳腔对光场的强大聚焦能力为调控光与物质的相互作用提供了前所未有的可能性[130]。但是由于等离激元的损耗性,对应腔模的线宽往往比较宽,这直接造成纳腔光子的寿命太短,因而Q一般比较小。

3.2 微纳光腔中光与物质耦合作用介绍

图5为CQED原理示意图。当这些微纳光腔的共振频率和半导体激发态的跃迁频率共振时,它们之间可以发生耦合。考虑到半导体激发态的跃迁是以激子的跃迁为主,跃迁强度(即振子强度)可以直接用激子跃迁频率ω的振子强度f来表示[131]:

f=2m*ωh-<uv|r·e|uc>2VexπaB3,(1)

式中:m*是激子的有效质量;|uv>和|uc>是空穴和电子的布洛赫函数;Vex是激子和光相互作用的模体积;aB是激子的玻尔半径; h-为约化普朗克常数;r为电子在光电场作用下离开平衡位置的位移;e为电子电荷。在腔光子和激子的耦合作用下,耦合强度g与激子振子强度f和腔模体积V紧密相关[116,119,131-133]:

g=(πe2f)1/2/(4πεrε0m0V)1/2,(2)

式中:εrε0分别是光腔和真空的介电常数;m0是自由电子的质量。根据耦合强度g、腔光子的耗散速率γcav(即上文描述的Δω/2)以及激子的衰减速率γex[图5(a)],耦合效应一般可以分为弱耦合和强耦合区域[131-134],下面将介绍这两个区域。介于弱耦合和强耦合区域之间的中耦合区域实际上属于比较有争议的弱耦合区域[133-135],这里不详细讨论。另外,超强耦合和强弱耦合的评判标准完全不一样,超强耦合是比较耦合强度和共振频率的大小,与是否强弱耦合没有直接关系(在某些情况下可以是弱耦合)[136-137],这里也不进行详细讨论。

图 5. CQED原理示意图。(a)腔光子和激子耦合过程示意图;(b)弱耦合区域Purcell效应增强荧光简化示意图;(c)强耦合区域激子极化激元的反交叉现象原理图,P+(P-)代表上(下)极化激元

Fig. 5. Schematics of CQED principles. (a) Schematic of coupling process between excitons and cavity photons; (b) schematic of fluorescence enhancement of Purcell effect in weak coupling regime; (c) schematic of anti-crossed exciton polaritons in strong coupling regime. P+ (P-) represents upper (lower) polaritons

下载图片 查看所有图片

3.2.1 弱耦合区域

在弱耦合区域,耦合效应主要通过Purcell效应来描述。当g< (γ2cav+γ2ex)/2,激子和腔光子的相互作用主要是以激子能量的形式单向地传输给腔光子。由于腔光子态密度的提高,腔光子的耦合对激子的自发荧光辐射起到巨大的增强作用[图5(b)],该作用可以用Purcell因子表示[138]:

FP=34π2λcn3QV,(3)

式中:λc是腔共振波长;n是腔材料的折射系数;QV分别是腔的品质因子和模体积。Purcell因子越大,激子的荧光复合速率越大,荧光强度和复合效率得到相应的提高。Purcell效应不仅可作用于荧光上,也可以作用于磷光、拉曼等光学响应上[130]。因此弱耦合是调控半导体光学特性的最重要的手段,在激光、二极管(LED)发光、荧光成像、超灵敏光传感以及量子信息处理过程中都发挥着至关重要的作用[5,130-131]

3.2.2 强耦合区域

在强耦合区域,耦合效应通过半光半物质的复合准粒子——激子极化激元来描述。当g> (γ2cav+γ2ex)/2,激子和腔光子快速的能量双向转换使得无法区分激子与腔光子,必须将其视为一个整体。最为直接的结果是系统形成新的本征态——部分光子部分激子的复合准粒子,激子极化激元[5,8,131,139]。激子极化激元的能态往往具有反交叉的特性,即激子和腔光子发生能量共振(腔失谐为0)时会形成一个Rabi劈裂。在简化的情形下,如果只考虑一种激子和一个腔模的耦合,激子极化激元由于反交叉可以形成上极化激元(UP)和下极化激元(LP),如图5(c)所示,它们的能态可以表示为[5,8,131,139]

ωUP,LP=ωcav+ωex2+iγcav+γex2±g2+1/4[(ωcav-ωex)+i(γcav-γex)]2,(4)

式中:ωex为激子频率。这里的Rabi劈裂可以表示为ΩRabi=2 g2+1/4[i(γcav-γex)]2,和耦合强度g直接成正比。注意,要形成Rabi劈裂,只需要g>|γex-γcav|/2。如上文描述,强耦合区域需要g> (γ2cav+γ2ex)/2。而在|γex-γcav|/2<g< (γ2cav+γ2ex)/2的情况下,能态劈裂出现,此时却并没有达到强耦合,而是达到有争议的中耦合或者弱耦合[133-135,140]。对于强耦合区域,即g= (πe2f)1/2/(4πεrε0m0V)1/2> (γcav2+γ2ex)/2,由于多数情况下,γcav相对较大,而且直接和Q成反比,因此一般g/γcav越大,即Qf/V越大,腔光子和激子的耦合越容易达到强耦合[116,119,131-133]

强耦合区域是CQED的核心部分。通过复合光子和激子的双重特性,激子极化激元具有光子的高传播性、超轻有效质量、多种光子自由度,同时具有激子的强非线性相互作用、灵敏的光电响应以及对外加电磁场的灵活调控性,因此在BEC等宏观量子效应、单光子非线性的量子调控以及非传统的光电器件中都有着广阔的研究前景[7-8,131]

4 二维半导体和微纳光腔的耦合

根据上文描述的二维半导体的光学特性以及微纳光腔的耦合效应,人们对二维半导体在微纳光腔中光与物质的耦合研究进入新的阶段[9-11]。该研究的独特性主要表现在以下几个方面:1)二维激子束缚能大,因此这些耦合都可以在室温下进行;2)由于二维激子的振子强度大以及二维半导体的低维尺寸(对应较小的V),它们和光腔的耦合强度在不同的光腔环境下相对较高;3)二维激子的谷自由度很容易和腔模光子耦合,可以展现出耦合之后谷自由度的光学选择性;4)二维激子和光腔的耦合可以被外加的电、磁、超快光场调控,这预示着相应光电器件的灵活调控性;5)二维半导体缺陷态和光腔的耦合可能为固态量子光学和量子信息通信提供一个全新的实用的实验平台;6)二维半导体异质结的光学探索也为二维异质结和光腔耦合指出了一个新的研究方向。正是这些独特性推动着二维半导体和光腔耦合的前期研究,接下来本文将主要介绍其中的一些代表性进展。

4.1 单层二维半导体和微纳光腔的弱耦合

微纳光腔的弱耦合效应会极大地增强和调控二维半导体中光与物质的相互作用。虽然二维半导体的单层中直接带隙的转换将激子的量子效率提高了4个数量级以上,但是它们的发光效率依然很低,并且受到介电环境、化学处理过程和微纳加工过程的影响[32,71]。第一个展示这种增强效应的工作是单层MoS2和PCC纳腔的弱耦合[141],如图6(a)所示。这里PCC的腔模是由线性缺陷引起的,所以具有线性偏振光的选择性。在第一次尝试中,该系统展现出了很强的Purcell效应,并且在某一个线性偏振方向上有选择地、极大地提高了MoS2激子的发光效率。当然,根据具体光腔模的特性,这个耦合效应的Purcell效应可以进一步增强并且控制辐射的方向性等其他特征[142]

图 6. 二维半导体和介质微纳光腔的弱耦合区域。(a)单层MoS2和PCC纳腔弱耦合的Purcell效应,Purcell效应具有对光腔的偏振依赖性[141];(b)单层WSe2的PCC纳腔超低阈值激光示意图[143];(c)单层WS2微盘激光器的示意图[144];(d)室温下单层MoTe2纳梁腔在近红外波段的连续激光结构图[145];(e)单层WS2嵌入式垂直腔表面发射激光器(VCSEL)结构示意图[146]

Fig. 6. Weak coupling regime of 2D semiconductors and dielectric micro/nano-cavities. (a) Purcell effect of weak coupling between monolayer MoS2 and PCC nanocavity. Purcell effect has polarization dependence on optical cavity[141]; (b) schematic of ultra-low threshold laser of monolayer WSe2 in PCC nanocavity[143]; (c) schematic of monolayer WS2 microdisk laser[144]; (d) schematic of CW near-infrared laser of monolayer MoTe2 nanobeam cavity at room temperature[145]; (e) structural diagram of monolayer WS2 VCSEL[146]

下载图片 查看所有图片

随着更高质量、更多形式的二维半导体光腔的实现,有关弱耦合效应的一个突出问题越来越引起研究人员的关注:这些二维半导体在微纳光腔中能否实现激射?很多团队都针对这个问题展开了不同的研究。例如,研究人员基于单层WSe2的PCC纳腔首次实现了单层二维半导体的超低阈值激光[143],如图6(b)所示。几乎同时,也有另外两个研究团队报道了基于WGM微腔的二维半导体激光[图6(c)][144,147]。在这些早期的激光实验中[143-144,147],光腔的高Q值(>2500)被认为是实现激射的一个必要条件,这些激射主要通过泵浦功率的超线性依赖性和在阈值附近的线宽窄化来表征。根据这些前期的探索,一维PCC纳米梁腔(Q≈5600)可以使得单层MoTe2在室温条件下实现近红外波段的连续激光[图6(d)][145]。当然,进一步提高二维激子的量子效率也有助于实现激射,从而可以降低对高Q值的要求。在图6(e)中,通过对介质环境的调控可提高单层WS2的量子效率,在Q值只有640左右时实现了垂直腔表面发射激光器(VCSEL)[146]。因为有些二维半导体激光的关键信息的缺失,这方面的研究依然需要进一步的探索。例如,在这些激射展示中,阈值附近线宽窄化的程度和激射光的相干性依然需要进一步的研究和确认[148]

等离激元纳腔和二维半导体的弱耦合效应可在控制发光特性的同时,对拉曼、谷自由度以及缺陷态的量子特性有很大的调控作用。在等离激元纳腔中,纳腔极小的腔模体积V对电场的极大束缚作用,可以很大程度上增大拉曼响应[127],因而在等离激元纳腔中二维半导体的荧光和拉曼光可以同时被增强[149-150],如图7(a)所示。根据特定纳腔的手性响应,弱耦合效应也有助于很好地控制二维半导体激子的谷自由度[图7(b)][140,151]。另外,在上文也提到,二维半导体缺陷态的单光子源也可以通过一些微纳加工的手段确定地制作出来[64-69],将这些制作过程和等离激元纳腔的制作结合起来,也可以直接调控这些单光子源的量子光学特性[69,152],例如加快它们的荧光复合速率和控制它们的外耦合效率等[图7(c)]。这些初期进展预示了通过光腔调控缺陷态的量子特性(如精确调控单个量子光源的量子特性以及它们与光腔的耦合效率)是一个非常重要的研究方向[69,153-154]

图 7. 二维半导体和等离激元纳腔的弱耦合区域。(a)等离激元纳腔和二维半导体弱耦合的Purcell效应对荧光和拉曼光的增强[149];(b)等离激元纳腔和二维半导体耦合效应对谷自由度的调控[140];(c)单层WSe2的缺陷态量子光源和等离激元纳腔的弱耦合效应[69]

Fig. 7. Weak coupling regime of 2D semiconductors and plasmonic nanocavities. (a) Purcell effect of weak coupling between plasmonic nanocavity and 2D semiconductor for enhancing Raman and fluorescence intensities[149]; (b) control of valley degree of freedom through coupling between plasmonic nanocavity and 2D semiconductor[140]; (c) weak coupling of quantum emitters with defect in monolayer WSe2 and plasmonic nanocavities[69]

下载图片 查看所有图片

图 8. 二维半导体和平面FP腔的强耦合区域。(a)室温下首次实现强耦合的单层MoS2和FP微腔的结构示意图[155];(b)实现强耦合的开放式FP微腔和单层MoSe2的结构示意图[156];(c)强耦合区域带有谷自由度的二维激子极化激元的原理示意图;(d)强耦合区域二维激子极化激元的非线性光学的原理示意图[161];(e)强耦合区域在非线性光学条件下形成的谷霍尔效应[162];(f)在强耦合区域,通过掺杂载流子浓度来调控激子极化激元和极化子的开放式FP微腔结构示意图[163];(g)实现强耦合区域电激发的二维激子极化激元的样品结构示意图[164]

Fig. 8. Strong coupling regime of 2D semiconductors and plane FP microcavities. (a) Structural diagram for first demonstration of strong coupling between monolayer MoS2 and FP microcavity at room temperature[155]; (b) structural diagram for strong coupling between monolayer MoSe2 and open FP microcavity[156]; (c) schematic of 2D polarized exciton polaritons with valley degree of freedom in strong coupling regime; (d) schematics of nonlinear optical principles of 2D polarized exciton polaritons in strong coupling regime[161]; (e) optical valley Hall effects based on nonlinear optical response of 2D exciton polaritons in strong coupling regime[162]; (f) structural schematic of open FP microcavity for control of 2D exciton polariton and polaron via carrier concentration in strong coupling regime[163]; (g) structural schematic of sample for realization of electrically pumped 2D exciton polaritons in strong coupling regime[164]

下载图片 查看所有图片

图 9. 二维半导体和其他不同形式微纳腔的强耦合区域。(a)实现等离激元纳腔和单层WSe2强耦合的样品示意图[173];(b)实现等离激元阵列和单层WSe2强耦合的样品微区成像图[178];(c)实现一维PCC和单层TMD强耦合的样品示意图[135];(d)实现DBR中的BSW模和单层WS2强耦合的样品示意图[183]

Fig. 9. Strong coupling regime of 2D semiconductors and micro/nano-cavities with different structures. (a) Sample schematic for realizing strong coupling between monolayer WSe2 and plasmonic nanocavity[173]; (b) sample microscopic image with strong coupling between monolayer MoSe2 and plasmonic array[178];(c) sample schematic for the strong coupling between monolayer TMD and one-dimensional PCC[135]; (d) sample schematic with strong coupling between monolayer WS2 and BSW mode in DBR substrate[183]

下载图片 查看所有图片

4.2 单层二维半导体和微纳光腔的强耦合

在强耦合区域中,很多基于二维激子物理特性的新兴物理现象不断涌现出来,其背后的基础物理研究和实际应用的开发就显得尤为重要[9-11]。强耦合区域中的激子极化激元是激子和腔光子形成的杂化准粒子,它们继承了二维激子和相应微纳光腔的双重特性,也直接预示了二维半导体光腔体系在BEC和室温手性超流体等量子研究、谷电子学和灵敏光电集成器件等方面的巨大潜力[9-11]

4.2.1 FP微腔

二维半导体和光腔的强耦合首先比较快速地在FP平面微腔实现,与之相关的应用研究也相继广泛地展开。在图8(a)中,单层MoS2和FP微腔的强耦合首次在室温下实现,这主要得益于单层TMD激子的强振子强度和大束缚能[155]。单层MoSe2和一个开放的FP腔[上表面的反射镜通过一个三维纳米位移平台来控制腔模,如图8(b)所示]也在低温下实现强耦合[156]。这些早期实验实现的强耦合主要通过比较从反射和荧光光谱中提取的耦合强度g和线宽γcav,γex等参数来判断,只有满足g> (γ2cav+γ2ex)/2,才会被认为是强耦合。至此,不同形式的TMD-FP光腔都展现出强耦合效应[11,157-159]

由于FP腔具有对称结构,二维激子极化激元能将谷自由度很好地保留下来[157,160-167],如图8(c)所示,它们的谷相干性也进一步被发现[168-169],尽管这些二维半导体的谷自由度会由于很多谷间的热动力学而在室温难以被保留[36,43]。随着这些二维半导体FP光腔的进一步优化,二维激子极化激元的动力学过程也能被逐渐解析[170]。同时,和这些动力学以及谷自由度紧密相关的非线性光学也被发现[图8(d)[161]]。在这些非线性光学的作用下,激子极化激元的谷霍尔效应也在实验上被报道[图8(e)[162]]。

此外,FP微腔也为强耦合效应的调控和应用提供很多便捷性。例如,通过将门电压器件嵌套在一个开放式的FP微腔中,二维半导体中的载流子浓度可以被自由调控,从而可以直接观察到强耦合和弱耦合之间的相互转换[171],也能发现激子极化激元和极化子的微观相互作用[图8(f)][163]。当把二维材料异质结(包括石墨烯、氮化硼和TMD等)的LED集成在一个FP微腔中时,电激发的二维激子极化激元LED也于最近在实验上被实现[图8(g)[164]]。这些令人瞩目的进展也进一步展示了FP微腔是二维激子极化激元的量子研究和光电应用研究最直接和便利的实验平台。

4.2.2 等离激元纳腔

等离激元纳腔为二维半导体的强耦合效应提供了一个特别的实验系统。如上文描述,等离激元由于具有超小的模体积V,能极大地提高二维激子和腔光子的耦合强度。虽然其品质因子Q往往偏小,很多等离激元纳腔都能得到比较高的Qf/V,从而有可能实现强耦合效应[130,172]。目前和二维半导体强耦合的等离激元纳腔也在多种形式上取得飞速的进展[173-177]。在图9(a)中[173],典型的纳米颗粒组成的纳腔在暗场散射的光谱测量中展示了反交叉形式的激子极化激元能态。和等离激元纳腔类似,基于等离激元阵列的光子模式也同样具有非常小的腔体积V,从而增强强耦合效应。强耦合效应也在多种不同形式的等离激元阵列中被发现[140,178-180]。在图9(b)中[178],典型的等离激元阵列的光子模式和二维激子耦合后在k空间的反射谱和荧光谱的色散关系中展示了非常明显的反交叉形式,这证实了强耦合效应。在这些进展中,和FP腔最不相同的一点是,等离激元光子结构和二维激子的耦合在一些特殊情况下被认为处于比较受争议的中耦合区域[140,172,179],与之相对应的,如何用强耦合模型去分析光学特性还值得后续更深入的研究[172]。另外,等离激元的一些结构还具有非常特别的手性选择性[140,151,181-182],这为强耦合下的激子极化激元的谷自由度调控提供了新的手段。

4.2.3 其他微纳光腔

图9为二维半导体和其他不同形式微纳腔的强耦合区域。除了这些常见的微纳腔之外,还有一些其他纳米光子结构的腔模也可以有效地促进强耦合效应。例如,一维光子结构(类似于光栅)的PCC也具有Q非常大的腔模[图9(c)],最近也被证实能在不同温度下与单层TMD实现强耦合[135]。DBR可以形成Q非常大的布洛赫表面波[BSW,图9(d)],在近期的实验中也被证实可以和二维激子发生强耦合并引发很强的非线性相互作用[183]。激子极化激元的非线性相互作用是相关量子现象的核心推动力[131],这里首次被发现的很强的非线性相互作用对二维激子极化激元在量子研究的应用具有非常重要的预示作用[183]。此外,值得指出的是,在这些纳米光子结构中,这些腔模由于几何形状都具有非常大的线性偏振依赖,所以二维激子的谷自由度在其中都无法被探测或者调控。

4.3 二维半导体异质结和微纳光腔的耦合

近期研究的二维半导体异质结为其和光腔的耦合开拓了全新的研究局面。上文中也着重介绍了异质结中层间扭曲角,这为异质结的光学特性以及量子属性带来了一个新的自由度[98-99]。在特定的扭曲角下,二维异质结间接激子的荧光复合速率和量子效率都可以得到很大程度的提高[98-99],这非常有利于形成基于间接激子的激光器。在图10(a)、(b)中[184-185],两种不同形式的PCC纳腔和0°扭曲角的异质结互相耦合,都最终形成了在室温条件下间接激子的激射。特别值得指出的是,其中一个激射实验[图10(c)]还特别展示了异质结激光在空间的相干性[184],这也是自研究人员进行二维激光器实验研究以来首次在实验上研究激射的相干性。研究二维异质结激光的这两个实验都在弱耦合区域进行[184-185],这意味着异质结和光腔的其他弱耦合效应值得被进一步研究。另一方面,这也预示着未来二维异质结的强耦合区域将会有更多基础研究和应用开发的空间。

图 10. 二维半导体异质结间接激子和PCC纳腔耦合形成的激光。(a)二维半导体WSe2/MoSe2异质结和一维PCC纳腔耦合之后形成激射的样品示意图[184];(b)二维半导体WSe2/MoS2异质结和二维PCC纳腔耦合之后形成激射的原理示意图[185];(c)左:迈克耳孙干涉仪测量示意图;右:间接激子激射的干涉图样,二者表明间接激子激光器的空间相干性[184]

Fig. 10. Laser generated by coupling between PCC nanocavity and interlayer excitons of 2D semiconductor heterostructures. (a) Sample schematic for lasing actions based on coupling between 2D semiconductor WSe2/MoSe2 heterostructure and one-dimensional PCC nanocavity[184]; (b) schematic for lasing principles based on coupling between 2D semiconductor WSe2/MoS2 heterostructure and two-dimensional PCC nanocavity[185]; (c) left: schematic for measurements of Michelson interferometer; right: interference pattern of indirectly exciton lasing, which indicates spatial coherence of interlayer excitonic laser[184]

下载图片 查看所有图片

5 结论和展望

首先介绍了二维半导体的光学特性,概括了能与这些二维半导体相匹配的各式微纳光腔,重点描述了二维半导体和不同形式光腔的弱耦合和强耦合效应,以及它们所展示出来的传统半导体光腔体系所不具备的新奇物理特性和相关的光电应用。从第一个二维半导体光腔的研究项目开始到目前为止约7年的时间里,这些二维半导体光腔的独特性激发了很多研究同行的极大兴趣,并且快速地推动了这个研究方向的发展。但是这个研究方向还有很多未知的领域值得去拓展。

本着抛砖引玉的目的,这里对这个方向的后续研究作出一些大胆的展望。首先,根据其在室温下的极度稳定性、携带的谷自由度和强相互作用,二维激子极化激元的BEC将为带有谷自由度的非线性光学和半导体光腔的量子特性研究带来深远的影响[8,10-11]。然而二维激子极化激元的BEC还未曾在实验上实现过,这也必将是接下来该方向研究的一个重要课题。其次,近两年来的二维异质结(特别是莫尔晶格)的快速发展,也为其和相应微纳光腔的耦合提供很多丰富的物理内涵(例如极化激元的拓扑性[186])。目前通过它们和PCC纳腔的耦合已经观察到激射现象[184-185],可以预见,二维异质结和光腔的耦合也必然是一个重要的研究方向。此外,二维半导体的谷自由度虽然有极大的应用前景,但往往容易受到热动力学的干扰,这阻碍了它们的实际应用。二维半导体和光腔耦合之后,对其谷自由度的调控变得更加切实可行,基于二维半导体光腔的谷电子器件或许也是以后谷电子学实际应用中的选择之一。此外,最近新型光腔形式的出现(例如BIC态的PCC)可以为二维半导体光腔的拓扑光学提供一些新的思路[187]。二维材料的单光子源是新兴的固体量子光源,这些量子光源和光腔耦合是它们作为实用的量子器件的必经之路。即使目前这些量子光源和光腔耦合的研究还处于探索阶段,存在很多技术上的困难[69,152],但是未来二维半导体量子光源和光腔的耦合也将成为二维半导体CQED研究的一个重要方面。

参考文献

[1] Walther H. Varcoe B T H, Englert B G, et al. Cavity quantum electrodynamics[J]. Reports on Progress in Physics, 2006, 69(5): 1325-1382.

[2] Haroche S, Brune M, Raimond J M. From cavity to circuit quantum electrodynamics[J]. Nature Physics, 2020, 16(3): 243-246.

[3] YamamotoY, TassoneF, CaoH. Semiconductor cavity quantum electrodynamics[M]. Heidelberg: Springer, 2000.

[4] Khitrova G, Gibbs H M, Jahnke F, et al. Nonlinear optics of normal-mode-coupling semiconductor microcavities[J]. Reviews of Modern Physics, 1999, 71(5): 1591.

[5] Gibbs H M, Khitrova G, Koch S W. Exciton-polariton light-semiconductor coupling effects[J]. Nature Photonics, 2011, 5(5): 273.

[6] Vahala K J. Optical microcavities[J]. Nature, 2003, 424(6950): 839-846.

[7] Lodahl P, Mahmoodian S, Stobbe S. Interfacing single photons and single quantum dots with photonic nanostructures[J]. Reviews of Modern Physics, 2015, 87(2): 347.

[8] Sanvitto D, Kéna-Cohen S. The road towards polaritonic devices[J]. Nature Materials, 2016, 15(10): 1061-1073.

[9] Mak K F, Shan J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides[J]. Nature Photonics, 2016, 10(4): 216-226.

[10] Liu X Z, Menon V M. Control of light-matter interaction in 2D atomic crystals using microcavities[J]. IEEE Journal of Quantum Electronics, 2015, 51(10): 0600308.

[11] Schneider C, Glazov M M, Korn T, et al. Two-dimensional semiconductors in the regime of strong light-matter coupling[J]. Nature Communications, 2018, 9: 2695.

[12] Novoselov K S, Jiang D, Schedin F, et al. Two-dimensional atomic crystals[J]. PNAS, 2005, 102(30): 10451-10453.

[13] Chhowalla M, Shin H S, Eda G, et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets[J]. Nature Chemistry, 2013, 5(4): 263-275.

[14] Li X S, Cai W W, An J, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils[J]. Science, 2009, 324(5932): 1312-1314.

[15] Lee Y H, Zhang X Q, Zhang W J, et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition[J]. Advanced Materials, 2012, 24(17): 2320-2325.

[16] Hua Z. Ultrathin two-dimensional nanomaterials[J]. ACS Nano, 2015, 9(10): 9451-9469.

[17] Wang Q H, Kalantar-Zadeh K, Kis A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[J]. Nature Nanotechnology, 2012, 7(11): 699-712.

[18] Geim A K. Graphene: status and prospects[J]. Science, 2009, 324(5934): 1530-1534.

[19] Kotov V N, Uchoa B, Pereira V M, et al. Electron-electron interactions in graphene: Current status and perspectives[J]. Reviews of Modern Physics, 2012, 84(3): 1067.

[20] Castro Neto A H, Guinea F, Peres N M R, et al. The electronic properties of graphene[J]. Reviews of Modern Physics, 2009, 81(1): 109.

[21] Das Sarma S, Adam S, Hwang E H, et al. Electronic transport in two-dimensional graphene[J]. Reviews of Modern Physics, 2011, 83(2): 407.

[22] Bonaccorso F, Sun Z, Hasan T, et al. Graphene photonics and optoelectronics[J]. Nature Photonics, 2010, 4(9): 611-622.

[23] Novoselov K S. Nobel lecture: Graphene in the flatland[J]. Reviews of Modern Physics, 2011, 83(3): 837.

[24] Geim A K. Nobel Lecture: Random walk to graphene[J]. Reviews of Modern Physics, 2011, 83(3): 851.

[25] Mak K F, Lee C, Hone J, et al. Atomically thin MoS2: A new direct-gap semiconductor[J]. Physical Review Letters, 2010, 105(13): 136805.

[26] Splendiani A, Sun L, Zhang Y B, et al. Emerging photoluminescence in monolayer MoS2[J]. Nano Letters, 2010, 10(4): 1271-1275.

[27] Lee Y H, Yu L, Wang H, et al. Synthesis and transfer of single-layer transition metal disulfides on diverse surfaces[J]. Nano Letters, 2013, 13(4): 1852-1857.

[28] Najmaei S, Liu Z, Zhou W, et al. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers[J]. Nature Materials, 2013, 12(8): 754-759.

[29] Huang P Y, Chenet D A, et al. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide[J]. Nature Materials, 2013, 12(6): 554-561.

[30] Liu F, Wu W J, Bai Y S, et al. Disassembling 2D van der Waals crystals into macroscopic monolayers and reassembling into artificial lattices[J]. Science, 2020, 367(6480): 903-906.

[31] Huang Y, Pan Y H, Yang R, et al. Universal mechanical exfoliation of large-area 2D crystals[J]. Nature Communications, 2020, 11(1): 2453.

[32] Wang G, Chernikov A, Glazov M M, et al. Colloquium: Excitons in atomically thin transition metal dichalcogenides[J]. Reviews of Modern Physics, 2018, 90(2): 021001.

[33] Schaibley J R, Yu H Y, Clark G, et al. Valleytronics in 2D materials[J]. Nature Reviews Materials, 2016, 1(11): 1-15.

[34] Mak K F, Xiao D, Shan J. Light-valley interactions in 2D semiconductors[J]. Nature Photonics, 2018, 12(8): 451-460.

[35] Xu X D, Yao W, Xiao D, et al. Spin and pseudospins in layered transition metal dichalcogenides[J]. Nature Physics, 2014, 10(5): 343-350.

[36] Chernikov A, Berkelbach T C, Hill H M, et al. Exciton binding energy and nonhydrogenic rydberg series in monolayer WS2[J]. Physical Review Letters, 2014, 113(7): 076802.

[37] Ye Z L, Cao T. O'Brien K, et al. Probing excitonic dark states in single-layer tungsten disulphide[J]. Nature, 2014, 513(7517): 214-218.

[38] Hill H M, Rigosi A F, Roquelet C, et al. Observation of excitonic Rydberg states in monolayer MoS2 and WS2 by photoluminescence excitation spectroscopy[J]. Nano Letters, 2015, 15(5): 2992-2997.

[39] Li YL. Measurement of the optical dielectric function of monolayer transition metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2[M] ∥Probing the Response of Two-Dimensional Crystals by Optical Spectroscopy. Cham: Springer International Publishing, 2015: 33- 43.

[40] Mak K F, He K L, Shan J, et al. Control of valley polarization in monolayer MoS2 by optical helicity[J]. Nature Nanotechnology, 2012, 7(8): 494-498.

[41] Zeng H, Dai J, Yao W, et al. Valley polarization in MoS2 monolayers by optical pumping[J]. Nature Nanotechnology, 2012, 7(8): 490-493.

[42] Cao T, Wang G, Han W, et al. Valley-selective circular dichroism of monolayer molybdenum disulphide[J]. Nature Communications, 2012, 3: 887.

[43] Malard L M, Alencar T V. Barboza A P M, et al. Observation of intense second harmonic generation from MoS2 atomic crystals[J]. Physical Review B, 2013, 87(20): 201401.

[44] Janisch C, Wang Y, Ma D, et al. Extraordinary Second Harmonic Generation in tungsten disulfide monolayers[J]. Scientific Reports, 2014, 4: 5530.

[45] Yin X B, Ye Z L, Chenet D A, et al. Edge nonlinear optics on a MoS2 atomic monolayer[J]. Science, 2014, 344(6183): 488-490.

[46] Wang G, Marie X, Gerber I, et al. Giant enhancement of the optical second-harmonic emission of WSe2 monolayers by laser excitation at exciton resonances[J]. Physical Review Letters, 2015, 114(9): 097403.

[47] Seyler K L, Schaibley J R, Gong P, et al. Electrical control of second-harmonic generation in a WSe2 monolayer transistor[J]. Nature Nanotechnology, 2015, 10(5): 407-411.

[48] Zhao M, Ye Z L, Suzuki R, et al. Atomically phase-matched second-harmonic generation in a 2D crystal[J]. Light: Science & Applications, 2016, 5(8): e16131.

[49] Xiao J, Ye Z L, Wang Y, et al. Nonlinear optical selection rule based on valley-exciton locking in monolayer WS2[J]. Light: Science & Applications, 2015, 4(12): e366.

[50] Yu H, Wang Y, Tong Q, et al. Anomalous light cones and valley optical selection rules of interlayer excitons in twisted heterobilayers[J]. Physical Review Letters, 2015, 115(18): 187002.

[51] Gong P, Yu H Y, Wang Y, et al. Optical selection rules for excitonic Rydberg series in the massive Dirac cones of hexagonal two-dimensional materials[J]. Physical Review B, 2017, 95(12): 125420.

[52] Hu G W, Hong X M, Wang K, et al. Coherent steering of nonlinear chiral valley photons with a synthetic Au-WS2 metasurface[J]. Nature Photonics, 2019, 13(7): 467-472.

[53] Chen J W, Wang K, Long H, et al. Tungsten disulfide-gold nanohole hybrid metasurfaces for nonlinear metalenses in the visible region[J]. Nano Letters, 2018, 18(2): 1344-1350.

[54] He Y M, Clark G, Schaibley J R, et al. Single quantum emitters in monolayer semiconductors[J]. Nature Nanotechnology, 2015, 10(6): 497-502.

[55] Srivastava A, Sidler M, Allain A V, et al. Optically active quantum dots in monolayer WSe2[J]. Nature Nanotechnology, 2015, 10(6): 491-496.

[56] Koperski M, Nogajewski K, Arora A, et al. Single photon emitters in exfoliated WSe2 structures[J]. Nature Nanotechnology, 2015, 10(6): 503-506.

[57] Chakraborty C, Kinnischtzke L, Goodfellow K M, et al. Voltage-controlled quantum light from an atomically thin semiconductor[J]. Nature Nanotechnology, 2015, 10(6): 507-511.

[58] Tonndorf P, Schmidt R, Schneider R, et al. Single-photon emission from localized excitons in an atomically thin semiconductor[J]. Optica, 2015, 2(4): 347-352.

[59] Tran T T, Bray K, Ford M J, et al. Quantum emission from hexagonal boron nitride monolayers[J]. Nature Nanotechnology, 2016, 11(1): 37-41.

[60] Chen X T, Lu X, Dubey S, et al. Entanglement of single-photons and chiral phonons in atomically thin WSe2[J]. Nature Physics, 2019, 15(3): 221-227.

[61] Lu X, Chen X, Dubey S, et al. Optical initialization of a single spin-valley in charged WSe2 quantum dots[J]. Nature Nanotechnology, 2019, 14(5): 426-431.

[62] Gottscholl A, Kianinia M, Soltamov V, et al. Initialization and read-out of intrinsic spin defects in a van der Waals crystal at room temperature[J]. Nature Materials, 2020, 19(5): 540-545.

[63] Hayee F, Yu L, Zhang J L, et al. Revealing multiple classes of stable quantum emitters in hexagonal boron nitride with correlated optical and electron microscopy[J]. Nature Materials, 2020, 19(5): 534-539.

[64] Branny A, Kumar S, Proux R, et al. Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor[J]. Nature Communications, 2017, 8: 15053.

[65] Palacios-Berraquero C, Kara D M, Montblanch A R, et al. Large-scale quantum-emitter arrays in atomically thin semiconductors[J]. Nature Communications, 2017, 8: 15093.

[66] Proscia N V, Shotan Z, Jayakumar H, et al. Near-deterministic activation of room-temperature quantum emitters in hexagonal boron nitride[J]. Optica, 2018, 5(9): 1128-1134.

[67] Grosso G, Moon H, Lienhard B, et al. Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride[J]. Nature Communications, 2017, 8(1): 705.

[68] Klein J, Lorke M, Florian M, et al. Site-selectively generated photon emitters in monolayer MoS2 via local helium ion irradiation[J]. Nature Communications, 2019, 10: 2755.

[69] Iff O, Lundt N, Betzold S, et al. Deterministic coupling of quantum emitters in WSe2 monolayers to plasmonic nanocavities[J]. Optics Express, 2018, 26(20): 25944-25951.

[70] Liu X L, Hersam M C. 2D materials for quantum information science[J]. Nature Reviews Materials, 2019, 4(10): 669-684.

[71] Xiao J, Zhao M, Wang Y, et al. Excitons in atomically thin 2D semiconductors and their applications[J]. Nanophotonics, 2017, 6(6): 1309-1328.

[72] Mak K F, He K L, Lee C, et al. Tightly bound trions in monolayer MoS2[J]. Nature Materials, 2013, 12(3): 207-211.

[73] Ross J S, Wu S F, Yu H Y, et al. Electrical control of neutral and charged excitons in a monolayer semiconductor[J]. Nature Communications, 2013, 4: 1474.

[74] You Y M, Zhang X X, Berkelbach T C, et al. Observation of biexcitons in monolayer WSe2[J]. Nature Physics, 2015, 11(6): 477-481.

[75] Li Z, Wang T, Lu Z, et al. Revealing the biexciton and trion-exciton complexes in BN encapsulated WSe2[J]. Nature Communications, 2018, 9(1): 3719.

[76] Ye Z L, Waldecker L, Ma E Y, et al. Efficient generation of neutral and charged biexcitons in encapsulated WSe2 monolayers[J]. Nature Communications, 2018, 9(1): 3718.

[77] Barbone M, Montblanch R P, Kara D M, et al. Charge-tuneable biexciton complexes in monolayer WSe2[J]. Nature Communications, 2018, 9: 3721.

[78] Chen S Y, Goldstein T, Taniguchi T, et al. Coulomb-bound four- and five-particle intervalley states in an atomically-thin semiconductor[J]. Nature Communications, 2018, 9(1): 3717.

[79] Wang Y, Xiao J, Zhu H, et al. Structural phase transition in monolayer MoTe2 driven by electrostatic doping[J]. Nature, 2017, 550(7677): 487-491.

[80] Aivazian G, Gong Z R, Jones A M, et al. Magnetic control of valley pseudospin in monolayer WSe2[J]. Nature Physics, 2015, 11(2): 148-152.

[81] Srivastava A, Sidler M, Allain A V, et al. Valley Zeeman effect in elementary optical excitations of monolayer WSe2[J]. Nature Physics, 2015, 11(2): 141-147.

[82] Li Y L, Ludwig J, Low T, et al. Valley splitting and polarization by the Zeeman effect in monolayer MoSe2[J]. Physical Review Letters, 2014, 113(26): 266804.

[83] Wang G, Marie X, Liu B L, et al. Control of exciton valley coherence in transition metal dichalcogenide monolayers[J]. Physical Review Letters, 2016, 117(18): 187401.

[84] Schmidt R, Arora A, Plechinger G, et al. Magnetic-field-induced rotation of polarized light emission from monolayer WS2[J]. Physical Review Letters, 2016, 117(7): 077402.

[85] Lyons T P, Dufferwiel S, Brooks M, et al. The valley Zeeman effect in inter- and intra-valley trions in monolayer WSe2[J]. Nature Communications, 2019, 10(1): 2330.

[86] Stevens C E, Paul J, Cox T, et al. Biexcitons in monolayer transition metal dichalcogenides tuned by magnetic fields[J]. Nature Communications, 2018, 9(1): 3720.

[87] Nagler P, Ballottin M V, Mitioglu A A, et al. Zeeman splitting and inverted polarization of biexciton emission in monolayer WS2[J]. Physical Review Letters, 2018, 121(5): 057402.

[88] Stier A V, Wilson N P, Velizhanin K A, et al. Magnetooptics of exciton Rydberg states in a monolayer semiconductor[J]. Physical Review Letters, 2018, 120(5): 057405.

[89] Goryca M, Li J, Stier A V, et al. Revealing exciton masses and dielectric properties of monolayer semiconductors with high magnetic fields[J]. Nature Communications, 2019, 10: 4172.

[90] Zhang X X, Cao T, Lu Z, et al. Magnetic brightening and control of dark excitons in monolayer WSe2[J]. Nature Nanotechnology, 2017, 12(9): 883-888.

[91] Molas M R, Faugeras C, Slobodeniuk A O, et al. Brightening of dark excitons in monolayers of semiconducting transition metal dichalcogenides[J]. 2D Materials, 2017, 4(2): 021003.

[92] Sie E J. McIver J W, Lee Y H, et al. Valley-selective optical Stark effect in monolayer WS2[J]. Nature Materials, 2015, 14(3): 290-294.

[93] Kim J, Hong X, Jin C, et al. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers[J]. Science, 2014, 346(6214): 1205-1208.

[94] Ye Z L, Sun D Z, Heinz T F. Optical manipulation of valley pseudospin[J]. Nature Physics, 2017, 13(1): 26-29.

[95] Yong C K. Utama M I B, Ong C S, et al. Valley-dependent exciton fine structure and Autler-Townes doublets from Berry phases in monolayer MoSe2[J]. Nature Materials, 2019, 18(10): 1065-1070.

[96] Sie E J, Lui C H, Lee Y H, et al. Large, valley-exclusive Bloch-Siegert shift in monolayer WS2[J]. Science, 2017, 355(6329): 1066-1069.

[97] Yong C K, Horng J, Shen Y X, et al. Biexcitonic optical Stark effects in monolayer molybdenum diselenide[J]. Nature Physics, 2018, 14(11): 1092-1096.

[98] Rivera P, Yu H, Seyler K L, et al. Interlayer valley excitons in heterobilayers of transition metal dichalcogenides[J]. Nature Nanotechnology, 2018, 13(11): 1004-1015.

[99] Jin C, Ma E Y, Karni O, et al. Ultrafast dynamics in van der Waals heterostructures[J]. Nature Nanotechnology, 2018, 13(11): 994-1003.

[100] Geim A K. Grigorieva I V. van der Waals heterostructures[J]. Nature, 2013, 499(7459): 419-425.

[101] Rivera P, Schaibley J R, Jones A M, et al. Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures[J]. Nature Communications, 2015, 6: 6242.

[102] Hong X, Kim J, Shi S F, et al. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures[J]. Nature Nanotechnology, 2014, 9(9): 682-686.

[103] Rivera P, Seyler K L, Yu H, et al. Valley-polarized exciton dynamics in a 2D semiconductor heterostructure[J]. Science, 2016, 351(6274): 688-691.

[104] Fogler M M, Butov L V, Novoselov K S. High-temperature superfluidity with indirect excitons in van der Waals heterostructures[J]. Nature Communications, 2014, 5: 4555.

[105] Wang Z F, Rhodes D A, Watanabe K, et al. Evidence of high-temperature exciton condensation in two-dimensional atomic double layers[J]. Nature, 2019, 574(7776): 76-80.

[106] Yu H Y, Liu G B, Tang J J, et al. Moiré excitons: From programmable quantum emitter arrays to spin-orbit-coupled artificial lattices[J]. Science Advances, 2017, 3(11): e1701696.

[107] Wu F, Lovorn T. MacDonald A H. Topological exciton bands in moiré heterojunctions[J]. Physical Review Letters, 2017, 118(14): 147401.

[108] Jin C, Regan E C, Yan A, et al. Observation of moiré excitons in WSe2/WS2 heterostructure superlattices[J]. Nature, 2019, 567(7746): 76-80.

[109] Seyler K L, Rivera P, Yu H, et al. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers[J]. Nature, 2019, 567(7746): 66-70.

[110] Tran K, Moody G, Wu F, et al. Evidence for moiré excitons in van der Waals heterostructures[J]. Nature, 2019, 567(7746): 71-75.

[111] Alexeev E M. Ruiz-Tijerina D A, Danovich M, et al. Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures[J]. Nature, 2019, 567(7746): 81-86.

[112] Yuan L, Zheng B Y, Kunstmann J, et al. Twist-angle-dependent interlayer exciton diffusion in WS2-WSe2 heterobilayers[J]. Nature Materials, 2020, 19(6): 617-623.

[113] Duan X, Gu Y, Gong Q H. Micro/nanoscale cavity quantum electrodynamics[J]. Physics, 2019, 48(6): 367-375.

[114] Yu X T, Yuan Y F, Xu J H, et al. Strong coupling in microcavity structures: Principle, design, and practical application[J]. Laser & Photonics Reviews, 2019, 13(1): 1800219.

[115] Zhang S P, Xu H X. Light-matter interaction in microcavity or nanocavity micro/nanoscale cavity quantum electrodynamics[J]. Physics, 2020, 49(3): 156-163.

[116] Reithmaier J P, Sęk G, Löffler A, et al. Strong coupling in a single quantum dot-semiconductor microcavity system[J]. Nature, 2004, 432(7014): 197-200.

[117] Armani D K, Kippenberg T J, Spillane S M, et al. Ultra-high-Q toroid microcavity on a chip[J]. Nature, 2003, 421(6926): 925-928.

[118] YablonovitchE. Inhibited spontaneous emission in solid-state physics and electronicsconfined electrons and photons[M] ∥Confined Electrons and Photons. New York: Springer, 1995.

[119] Yoshie T, Scherer A, Hendrickson J, et al. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity[J]. Nature, 2004, 432(7014): 200-203.

[120] Hsu C W, Zhen B, Douglas Stone A, et al. Bound states in the continuum[J]. Nature Reviews Materials, 2016, 1: 16048.

[121] Hsu C W, Zhen B, Lee J, et al. Observation of trapped light within the radiation continuum[J]. Nature, 2013, 499(7457): 188-191.

[122] Kodigala A, Lepetit T, Gu Q, et al. Lasing action from photonic bound states in continuum[J]. Nature, 2017, 541(7636): 196-199.

[123] Jin J C, Yin X F, Ni L F, et al. Topologically enabled ultrahigh-Q guided resonances robust to out-of-plane scattering[J]. Nature, 2019, 574(7779): 501-504.

[124] Yin X F, Jin J C. Solja i M, et al. Observation of topologically enabled unidirectional guided resonances[J]. Nature, 2020, 580(7804): 467-471.

[125] Zhen B, Hsu C W, Lu L, et al. Topological nature of optical bound states in the continuum[J]. Physical Review Letters, 2014, 113(25): 257401.

[126] Xu H X, Bjerneld E J, Käll M, et al. Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering[J]. Physical Review Letters, 1999, 83(21): 4357.

[127] Xu H, Aizpurua J. Kall M, at al. Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering[J]. Physical Review E Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 2000, 62(3 Pt B): 4318-4324.

[128] Chikkaraddy R, de Nijs B, Benz F, et al. Single-molecule strong coupling at room temperature in plasmonic nanocavities[J]. Nature, 2016, 535(7610): 127-130.

[129] Akselrod G M, Argyropoulos C, Hoang T B, et al. Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas[J]. Nature Photonics, 2014, 8(11): 835-840.

[130] Baumberg J J, Aizpurua J, Mikkelsen M H, et al. Extreme nanophotonics from ultrathin metallic gaps[J]. Nature Materials, 2019, 18(7): 668-678.

[131] Deng H, Haug H, Yamamoto Y. Exciton-polariton Bose-Einstein condensation[J]. Reviews of Modern Physics, 2010, 82(2): 1489.

[132] Andreani L C, Panzarini G, Gérard J M. Strong-coupling regime for quantum boxes in pillar microcavities: Theory[J]. Physical Review B, 1999, 60(19): 13276.

[133] Houdré R. Early stages of continuous wave experiments on cavity-polaritons[J]. Physica Status Solidi (b), 2005, 242(11): 2167-2196.

[134] Savona V, Andreani L C, Schwendimann P, et al. Quantum well excitons in semiconductor microcavities: Unified treatment of weak and strong coupling regimes[J]. Solid State Communications, 1995, 93(9): 733-739.

[135] Zhang L, Gogna R, Burg W, et al. Photonic-crystal exciton-polaritons in monolayer semiconductors[J]. Nature Communications, 2018, 9(1): 713.

[136] Frisk Kockum A. Miranowicz A, de Liberato S, et al. Ultrastrong coupling between light and matter[J]. Nature Reviews Physics, 2019, 1(1): 19-40.

[137] Forn-Díaz P, Lamata L, Rico E, et al. Ultrastrong coupling regimes of light-matter interaction[J]. Reviews of Modern Physics, 2019, 91(2): 025005.

[138] Purcell EM. Spontaneous emission probabilities at radio frequencies[M] ∥Confined Electrons and Photons. New York: Springer, 1995.

[139] Byrnes T, Kim N Y, Yamamoto Y. Exciton-polariton condensates[J]. Nature Physics, 2014, 10(11): 803-813.

[140] Chervy T, Azzini S, Lorchat E, et al. Room temperature chiral coupling of valley excitons with spin-momentum locked surface plasmons[J]. ACS Photonics, 2018, 5(4): 1281-1287.

[141] Gan X, Gao Y, Fai Mak K, et al. Controlling the spontaneous emission rate of monolayer MoS2 in a photonic crystal nanocavity[J]. Applied Physics Letters, 2013, 103(18): 181119.

[142] Wu S F, Buckley S, Jones A M, et al. Control of two-dimensional excitonic light emission via photonic crystal[J]. 2D Materials, 2014, 1(1): 011001.

[143] Wu S F, Buckley S, Schaibley J R, et al. Monolayer semiconductor nanocavity lasers with ultralow thresholds[J]. Nature, 2015, 520(7545): 69-72.

[144] Ye Y, Wong Z J, Lu X F, et al. Monolayer excitonic laser[J]. Nature Photonics, 2015, 9(11): 733-737.

[145] Salehzadeh O, Djavid M, Tran N H, et al. Optically pumped two-dimensional MoS2 lasers operating at room-temperature[J]. Nano Letters, 2015, 15(8): 5302-5306.

[146] Li Y, Zhang J, Huang D, et al. Room-temperature continuous-wave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity[J]. Nature Nanotechnology, 2017, 12(10): 987-992.

[147] Shang J Z, Cong C X, Wang Z L, et al. Room-temperature 2D semiconductor activated vertical-cavity surface-emitting lasers[J]. Nature Communications, 2017, 8(1): 543.

[148] Reeves L, Wang Y, Krauss T F. 2D material microcavity light emitters: To lase or not to lase?[J]. Advanced Optical Materials, 2018, 6(19): 1800272.

[149] Zhang Y X, Chen W, Fu T, et al. Simultaneous surface-enhanced resonant Raman and fluorescence spectroscopy of monolayer MoSe2: Determination of ultrafast decay rates in nanometer dimension[J]. Nano Letters, 2019, 19(9): 6284-6291.

[150] Chen W, Zhang S, Kang M, et al. Probing the limits of plasmonic enhancement using a two-dimensional atomic crystal probe[J]. Light, Science & Applications, 2018, 7: 56.

[151] Sun J W, Hu H T, Pan D, et al. Selectively depopulating valley-polarized excitons in monolayer MoS2 by local chirality in single plasmonic nanocavity[J]. Nano Letters, 2020, 20(7): 4953-4959.

[152] Tran T T, Wang D Q, Xu Z Q, et al. Deterministic coupling of quantum emitters in 2D materials to plasmonic nanocavity arrays[J]. Nano Letters, 2017, 17(4): 2634-2639.

[153] Caldwell J D, Aharonovich I, Cassabois G, et al. Photonics with hexagonal boron nitride[J]. Nature Reviews Materials, 2019, 4(8): 552-567.

[154] Kim S, Fröch J E, Christian J, et al. Photonic crystal cavities from hexagonal boron nitride[J]. Nature Communications, 2018, 9: 2623.

[155] Liu X Z, Galfsky T, Sun Z, et al. Strong light-matter coupling in two-dimensional atomic crystals[J]. Nature Photonics, 2015, 9(1): 30-34.

[156] Dufferwiel S, Schwarz S, Withers F, et al. Exciton-polaritons in van der Waals heterostructures embedded in tunable microcavities[J]. Nature Communications, 2015, 6: 8579.

[157] Król M, Lekenta K, Mirek R, et al. Valley polarization of exciton-polaritons in monolayer WSe2 in a tunable microcavity[J]. Nanoscale, 2019, 11(19): 9574-9579.

[158] Lundt N, Klembt S, Cherotchenko E, et al. Room-temperature Tamm-plasmon exciton-polaritons with a WSe2 monolayer[J]. Nature Communications, 2016, 7: 13328.

[159] Flatten L C, He Z, Coles D M, et al. Room-temperature exciton-polaritons with two-dimensional WS2[J]. Scientific Reports, 2016, 6: 33134.

[160] Sun Z, Gu J, Ghazaryan A, et al. Optical control of room-temperature valley polaritons[J]. Nature Photonics, 2017, 11(8): 491-496.

[161] Dufferwiel S, Lyons T P, Solnyshkov D D, et al. Valley-addressable polaritons in atomically thin semiconductors[J]. Nature Photonics, 2017, 11(8): 497-501.

[162] Chen Y J, Cain J D, Stanev T K, et al. Valley-polarized exciton-polaritons in a monolayer semiconductor[J]. Nature Photonics, 2017, 11(7): 431-435.

[163] Lundt N, Stoll S, Nagler P, et al. Observation of macroscopic valley-polarized monolayer exciton-polaritons at room temperature[J]. Physical Review B, 2017, 96(24): 241403.

[164] Qiu L, Chakraborty C, Dhara S, et al. Room-temperature valley coherence in a polaritonic system[J]. Nature Communications, 2019, 10(1): 1513.

[165] Dufferwiel S, Lyons T P, Solnyshkov D D, et al. Valley coherent exciton-polaritons in a monolayer semiconductor[J]. Nature Communications, 2018, 9(1): 4797.

[166] Liu X Z, Bao W, Li Q W, et al. Control of coherently coupled exciton polaritons in monolayer tungsten disulphide[J]. Physical Review Letters, 2017, 119(2): 027403.

[167] Liu X Z, Yi J, Li Q W, et al. Nonlinear optics at excited states of exciton polaritons in two-dimensional atomic crystals[J]. Nano Letters, 2020, 20(3): 1676-1685.

[168] Lundt N, Dusanowski Ł, Sedov E, et al. Optical valley Hall effect for highly valley-coherent exciton-polaritons in an atomically thin semiconductor[J]. Nature Nanotechnology, 2019, 14(8): 770-775.

[169] Chakraborty B, Gu J, Sun Z, et al. Control of strong light-matter interaction in monolayer WS2 through electric field gating[J]. Nano Letters, 2018, 18(10): 6455-6460.

[170] Sidler M, Back P, Cotlet O, et al. Fermi polaron-polaritons in charge-tunable atomically thin semiconductors[J]. Nature Physics, 2017, 13(3): 255-261.

[171] Gu J, Chakraborty B, Khatoniar M, et al. A room-temperature polariton light-emitting diode based on monolayer WS2[J]. Nature Nanotechnology, 2019, 14(11): 1024-1028.

[172] Pelton M, Storm S D, Leng H X. Strong coupling of emitters to single plasmonic nanoparticles: Exciton-induced transparency and Rabi splitting[J]. Nanoscale, 2019, 11(31): 14540-14552.

[173] Zheng D, Zhang S P, Deng Q, et al. Manipulating coherent plasmon-exciton interaction in a single silver nanorod on monolayer WSe2[J]. Nano Letters, 2017, 17(6): 3809-3814.

[174] Kleemann M E, Chikkaraddy R, Alexeev E M, et al. Strong-coupling of WSe2 in ultra-compact plasmonic nanocavities at room temperature[J]. Nature Communications, 2017, 8(1): 1296.

[175] Wen J X, Wang H, Wang W L, et al. Room-temperature strong light-matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals[J]. Nano Letters, 2017, 17(8): 4689-4697.

[176] Qin J, Chen Y H, Zhang Z P, et al. Revealing strong plasmon-exciton coupling between nanogap resonators and two-dimensional semiconductors at ambient conditions[J]. Physical Review Letters, 2020, 124(6): 063902.

[177] Han X B, Wang K, Xing X Y, et al. Rabi splitting in a plasmonic nanocavity coupled to a WS2 monolayer at room temperature[J]. ACS Photonics, 2018, 5(10): 3970-3976.

[178] Wang S J, Li S L, Chervy T, et al. Coherent coupling of WS2 monolayers with metallic photonic nanostructures at room temperature[J]. Nano Letters, 2016, 16(7): 4368-4374.

[179] Liu W J, Wang Y H, Naylor C H, et al. Understanding the different exciton-plasmon coupling regimes in two-dimensional semiconductors coupled with plasmonic lattices: A combined experimental and unified equation of motion approach[J]. ACS Photonics, 2018, 5(1): 192-204.

[180] Liu W J, Lee B, Naylor C H, et al. Strong exciton-plasmon coupling in MoS2 coupled with plasmonic lattice[J]. Nano Letters, 2016, 16(2): 1262-1269.

[181] Sun L Y, Wang C Y, Krasnok A, et al. Separation of valley excitons in a MoS2 monolayer using a subwavelength asymmetric groove array[J]. Nature Photonics, 2019, 13(3): 180-184.

[182] Gong S H, Alpeggiani F, Sciacca B, et al. Nanoscale chiral valley-photon interface through optical spin-orbit coupling[J]. Science, 2018, 359(6374): 443-447.

[183] Fábio B, Antonio F, Soroush H, et al. Interacting polariton fluids in a monolayer of tungsten disulfide[J]. Nature Nanotechnology, 2018, 13: 906-909.

[184] Paik E Y, Zhang L, Burg G W, et al. Interlayer exciton laser of extended spatial coherence in atomically thin heterostructures[J]. Nature, 2019, 576(7785): 80-84.

[185] Liu YD, Fang HL, RasmitaA, et al., 2019, 5(4): eaav4506.

[186] Yu H Y, Yao W. Electrically tunable topological transport of moiré polaritons[J]. Science Bulletin, 2020, 65(18): 1555-1562.

[187] Koshelev K L, Sychev S K, Sadrieva Z F, et al. Strong coupling between excitons in transition metal dichalcogenides and optical bound states in the continuum[J]. Physical Review B, 2018, 98(16): 161113.

刘晓泽, 张馨元, 张顺平, 管志强, 徐红星. 二维半导体微纳光腔中光与物质的耦合[J]. 光学学报, 2021, 41(8): 0823003. Xiaoze Liu, Xinyuan Zhang, Shunping Zhang, Zhiqiang Guan, Hongxing Xu. Light-Matter Coupling of Two-Dimensional Semiconductors in Micro-Nano Optical Cavities[J]. Acta Optica Sinica, 2021, 41(8): 0823003.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!