光子学报, 2016, 45 (12): 1207001, 网络出版: 2016-12-26  

基于周期图最大似然算法的相干激光测风多普勒频率估计

Doppler Frequency Estimation of Coherent Doppler Wind Lidar Based on Periodogram Maximum Likelihood Algorithm
胡以华 1,2,*于磊 1,2徐世龙 1,2李乐 1,2郭力仁 1,2
作者单位
1 脉冲功率激光技术国家重点实验室, 合肥 230037
2 安徽省电子制约技术重点实验室, 合肥 230037
摘要
采用径向风速的估计不确定度和探测概率作为评价指标, 研究了周期图最大似然(PML)算法的多普勒频率估计性能.基于大气分层激光回波模型, 分别以PML和周期图最大值法(PM)对回波信号进行处理, 验证了PML算法在相干激光测风中的可行性; 分析比较不同信噪比条件下PML算法的风速估计不确定度与探测概率.仿真结果表明, 在发射脉冲宽度为400 ns、采样点数为128时, PML算法适合在中等信噪比条件下使用, 且风速估计的不确定度整体小于PM算法的, 在信噪比为-13 dB时径向风速的估计不确定度为0.75 m/s, 探测概率在90%以上, 该研究为后续的外场试验提供了指导.
Abstract
Using the estimation uncertainty of the radial velocity and the detection probability as the evaluation index, the Doppler frequency estimation performance of Periodogram Maximum Likelihood (PML) algorithm was studied. Based on the stratified atmosphere laser echo model, the echo signal was processed by PML and Periodogram Maximum method (PM) respectively to verify the feasibility of PML algorithm. The uncertainties of estimated wind speed and detection probability were analyzed comparatively under the different signal-to-noise ratios condition with PML algorithm. The simulation results show that, with a transmitting pulse width of 400ns and the sampling points of 128, the PML algorithm is suitable for moderate signal-to-noise ratio, and the overall uncertainty of the estimated wind speed is lesser than PM algorithm. When the signal-to-noise ratio is -13 dB, the radial velocity estimation uncertainty is 0.75 m/s and detection probability is more than 90%. This study provides guidance for subsequent field trials.
参考文献

[1] 胡申森, 刘继桥, 刁伟峰,等. 机载多普勒激光测风雷达风场反演研究[J]. 气象科学, 2016, 36(1): 96-101.

    HU Shen-sen, LIU Ji-qiao, DIAO Wei-feng, et al. Study of wind profile inversion based on airborne Doppler wind lidar[J]. Journal of the Meteorological Sciences, 2016, 36(1): 96-101.

[2] DOLFI-BOUTEYRE A, CANAT G, VALLA M, et al. Pulsed 1.5- m LIDAR for axial aircraft wake vortex detection based on high-brightness large-core fiber amplifier[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(2): 441-450.

[3] ANDO T, KAMEYAMA S, HIRANO Y. All-fiber coherent Doppler LIDAR technologies at Mitsubishi electric corporation[J]. IOP Conference Series: Earth and Environmental Science, 2008, 1: 12011.

[4] 白雪, 郭磐, 陈思颖,等. 相干多普勒测风激光雷达时域信号仿真及时频分析[J]. 中国激光, 2015,42(1): 0114003.

    BAI Xue, GUO Pan, CHEN Si-ying, et al. Simulation in the time domain and time-frequency analysis for coherent doppler wind lidar[J]. Chinese Journal of Lasers, 2015, 42(1): 0114003.

[5] 吴永华, 胡以华, 戴定川,等. 基于1.5μm多普勒激光雷达的飞机尾涡探测技术研究[J]. 光子学报, 2011, 40(6): 811-817.

    WU Yong-hua, HU Yi-hua, DAI Ding-chuan, et al. Research on the technique of aircraft wake vortex detection based on 1.5 μm Doppler lidar[J]. Acta Photonica Sinica, 2011, 40(6): 811-817.

[6] 徐世龙, 胡以华. 基于激光雷达回波的飞机尾涡参量提取[J]. 光子学报, 2013, 42(1): 54-58.

    XU Shi-long, HU Yi-hua. Extrication of wake vortex parameters based on lidar echo[J]. Acta Photonica Sinica, 2013, 42(1): 54-58.

[7] 徐世龙, 胡以华, 吴永华. 基于多普勒谱特征的飞机尾涡识别[J]. 光电子·激光, 2011,22(12): 1826-1830.

    XU Shi-long, HU Yi-hua, WU Yong-hua. Identification of aircraft wake vortex based on Doppler spectrum features[J]. Journal of Optoelectronics·Laser, 2011, 22(12): 1826-1830.

[8] 吴永华, 胡以华, 顾有林,等. 一种新型的空中运动目标信息获取算法的研究[J]. 光学学报, 2010, 30(s1): s100510.

    WU Yong-hua, HU Yi-hua, GU You-lin, et al. Research on a new air moving target information acquisition algorithm[J]. Acta Optica Sinica, 2010, 30(s1): s100510.

[9] 李路, 郭磐, 张寅超,等. 先验平滑方法在相干测风激光雷达中的应用[J]. 光学学报, 2015,35(7): 0728001.

    LI Lu, GUO Pan, ZHANG Yin-chao, et al. Application of smoothness prior aproach for coherent doppler wind lidar[J]. Acta Optica Sinica, 2015, 35(7): 0728001.

[10] 王国成, 孙东松, 段连飞,等. 多普勒测风激光雷达风场数据影响因素分析[J]. 光学学报, 2015, 35(09): 0901003.

    WANG Guo-cheng, SUN Dong-song, DUAN Lian-fei, et al. Analysis of factors affecting the data accuracy of Doppler wind lidar[J]. Acta Optica Sinica, 2015, 35(09): 0901003.

[11] ABEYSEKERA S. Performance of pulse-pair method of Doppler estimation[J]. IEEE Transactions on Aerospace & Electronic Systems, 1998, 34(2): 520-531.

[12] ABEYSEKERA S. Efficient frequency estimation using the pulse-pair method at various lags[J]. IEEE Transactions on Communications, 2006, 54(9): 1542-1546.

[13] DABAS A M, DROBINSKI P, FLAMANTl P H. Adaptive filters for frequency estimate of heterodyne Doppler lidar returns: recursive implementation and quality control[J]. Journal of Atmospheric & Oceanic Technology, 1999, 16(3): 361-372.

[14] 贾晓东, 孙东松, 舒志峰,等. 相干激光雷达中望远镜的优化及探测性能分析[J]. 光学学报, 2015, 35(3): 0301001.

    JIA Xiao-dong, SUN Dong-feng, SHU Zhi-feng, et al. Optimal design of the telescope in coherent lidar and detection performance analysis[J]. Acta Optica Sinica, 2015, 35(3): 0301001.

[15] FREHLICH R. Performance of maximum likelihood estimators of mean power and Doppler velocity with A priori knowledge of spectral width[J]. Journal of Atmospheric & Oceanic Technology, 1999, 16(11): 1702-1709.

[16] 贾晓东, 孙东松. 相干激光雷达中最大似然离散谱峰值估计及 Monte Carlo 仿真[J]. 强激光与粒子束, 2015, 27(6): 69-74.

    JIA Xiao-dong, SUN Dong-feng. Maximum likelihood discrete spectral peak estimation in coherent wind lidar and Monte Carlo simulation[J]. High Power Laser & Particle Beams, 2015, 27(6): 69-74.

[17] 郭贤斌, 郭磐, 张寅超,等. 最大似然频谱估计法与周期图最大值法的性能比较分析[J]. 中国激光, 2016,43(3): 0314001.

    GUO Xian-bin, GUO Pan, ZHANG Yin-chao, et al. Performance analysis of maximum likelihood spectral estimator compared with PM estimator[J]. Chinese Journal of Lasers, 2016, 43(3): 0314001.

[18] FREHLICH R. Effects of wind turbulence on coherent Doppler lidar performance[J]. Journal of Atmospheric & Oceanic Technology, 1997, 14(1): 54-75.

[19] FREHLICH R. Cramer-Rao bound for Gaussian random processes and applications to radar processing of atmospheric signals[J]. IEEE Transactions on Geoscience & Remote Sensing, 1993, 31(6): 1123-1131.

[20] KAMEYAMA S, ANDO T, ASAKA K, et al. Performance of discrete-fourier-transform-based velocity estimators for a wind-sensing coherent Doppler lidar system in the Kolmogorov turbulence regime[J]. Geoscience & Remote Sensing IEEE Transactions on, 2009, 47(10): 3560-3569.

[21] SALAMITOU P, DABAS A, FLAMANT P H. Simulation in the time domain for heterodyne coherent laser radar.[J]. Applied Optics, 1995, 34(3): 499-506.

[22] 徐世龙, 胡以华, 郭力仁. 飞机尾涡相干激光探测系统设计与性能分析[J]. 激光与光电子学进展, 2014,51(8): 100-105.

    XU Shi-long, HU Yi-hua, GUO Li-ren. Design and performance analysis of aircraft wake vortex coherent laser detection system[J]. Laser & Optoelectronics Progress, 2014, 51(8): 100-105.

[23] FREHLICH R. Simulation of Coherent Doppler lidar performance in the weak-signal regime[J]. Journal of Atmospheric & Oceanic Technology, 1996, 13(3): 646-658.

[24] IGORS, FREHLICH K, STEPHAN R. Measurement of atmospheric turbulence by 2 μ m Doppler lidar[J]. Journal of Atmospheric & Oceanic Technology, 2005, 22(11): 1733-174.

胡以华, 于磊, 徐世龙, 李乐, 郭力仁. 基于周期图最大似然算法的相干激光测风多普勒频率估计[J]. 光子学报, 2016, 45(12): 1207001. HU Yi-hua, YU Lei, XU Shi-long, LI Le, DONG Xiao. Doppler Frequency Estimation of Coherent Doppler Wind Lidar Based on Periodogram Maximum Likelihood Algorithm[J]. ACTA PHOTONICA SINICA, 2016, 45(12): 1207001.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!