光子学报, 2017, 46 (12): 1226002, 网络出版: 2017-11-23  

显微物镜聚焦光场任意三维偏振方向的控制

Arbitrary Three Dimensional Polarization Direction Control at Focal Field of a Microscope Objective
作者单位
南京航空航天大学 生物医学工程系, 南京 211106
摘要
线性偏振光在显微物镜焦斑处入射, 与径向偏振光相干叠加产生三维偏振光场, 通过调节两束光光强比率和入射线偏振光偏振方向实现聚焦光场任意三维偏振方向的控制.基于矢量光场衍射理论建立了仿真计算模型, 对所提三维偏振方向控制方法的可行性进行理论验证和实验评估.构建实际控制光路并进行初步测试, 实验结果表明了该方法的可行性, 且相比于其他三维偏振控制方法, 本文所提方法和其控制光路更为简单易实现.
Abstract
The coherent superposition of incoming linearly polarized light and radially polarized light can generate the three-dimensional (3D) polarization optical field at the focal spot of a high NA microscopic objective. In addition, arbitrary 3D polarization orientation of focusing optical field can be obtained by adjusting the intensity ratio between two incoming beams and rotating the polarization orientation of the incoming linearly polarized light. Based on the vectorial diffraction theory, a simulation model was developed to theoretically verify the feasibility of the proposed control method of 3D polarization, and to evaluate the 3D polarization optical field generated from this control method. After experimental test on the basis of theoretical analysis and building the practical optical setup, the feasibility of the method was confirmed. It was also disclosed that this method and the corresponding optical path is simpler and easier to implement compared with other existing 3D polarization control methods.
参考文献

[1] 程怡, 唐志列. 基于斯托克斯参量测量的偏振共焦显微成像技术的研究[J]. 光学学报,2014,34(6): 0611005.

    CHENG Yi, TANG Zhi-lie. Study of confocal microscopy imaging system based on stokes parameters measurement[J]. Acta Optica Sinica, 2014, 34(6): 0611005.

[2] 王潇,赵远,杨凤,等. 基于电光调制器的高速偏振荧光显微系统[J]. 光学学报,2017,37(11): 1118001.

    WANG Xiao, ZHAO Yuan, YANG Feng, et al. High speed polarized fluorescence microscopy based on an electro optical modulator[J]. Acta Optica Sinica, 2017, 37(11): 1118001.

[3] ROSELL F I, BOXER S G. Polarized absorption spectra of green fluorescent proteinsingle crystals: transition dipole moment directions[J]. Biochemistry, 2003, 42(1): 177-183.

[4] KRESS A, WANG Xiao, RANCHON H, et al. Mapping the local organization of cell membranes using excitation polarization-resolved confocal fluorescence microscopy[J]. Biophysical Journal, 2013, 105(1): 127-136.

[5] VRABIOIUA M, MITCHISON T J. Structural insights into yeast septin organizationfrom polarized fluorescence microscopy[J]. Nature, 2006, 443(7110): 466-469.

[6] KAMPMANNM, ATKINSON C E, MATTHEYES A L, et al.Mapping the orientation of nuclear pore proteins in living cells with polarized fluorescence microscopy[J]. Nature Structural & Molecular Biology, 2011, 18(6): 643-649.

[7] LAZAR J, BONDAR A, TIMR S, et al. Two-photon polarization microscopy reveals protein structure and function[J]. Nature Methods, 2011, 8(8): 684-690.

[8] GASECKA A, TAUC P, LEWITBENTLEY A, et al. Investigation of molecular and protein crystals by three photon polarization resolved microscopy[J]. Physical Review Letters, 2012, 108(26): 263901.

[9] DUBOISSET J, FERRAND P, HE Wei, et al. Thioflavine-T and Congo Red reveal the polymorphism of insulin amyloid fibrils when probed by polarization-resolved fluorescence microscopy[J]. The Journal of Physical Chemistry B, 2013, 117(3): 784-788.

[10] GUSACHENKOI, TRAN V, HOUSSEN YG, et al. Polarization-resolved second-harmonic generation in tendon upon mechanical stretching[J]. Biophysical Journal, 2012, 102(9): 2220-2229.

[11] TANAKA Y, HASE E, FUKUSCHIMA S, et al.Motion-artifact-robust, polarization-resolvedsecond-harmonic-generation microscopy basedon rapid polarization switching with electrooptic Pockells cell and its application to in vivovisualization of collagen fiber orientation inhuman facial skin[J]. Biomedical Optics Express, 2014, 5(4): 1099-1113.

[12] HAFI N,GRUNWALD M, SVAN L, et al. Fluorescence nanoscopy by polarization modulation and polarization angle narrowing[J]. Nature Methods, 2014, 11(5): 579.

[13] ZHANGHAO K, CHEN Long, YANG, Xu-san, et al. Super-resolution dipole orientation mapping via polarization demodulation[J], Light Science & Applications, 2016, 5(10): e16166.

[14] ZIJLSTRA P, CHON JWM, GU Min. Five-dimensional optical recording mediated by surface plasmons in gold nanorods[J]. Nature, 2009, 459(7245): 410-413.

[15] MASLOV A V. Levitation and propulsion of a Mie-resonance particle by a surface plasmon[J]. Optics Letters, 2017, 42(17): 3327-3330.

[16] ABOURADDY A F, TOUSSAINT K C, Jr. Three-dimensional polarization control in microscopy[J]. Physical Review Letters, 2006, 96(15): 153901.

[17] LI Xiang-ping, LAN TH, TIEN CH, et al. Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam[J]. Nature Communications, 2012, 3(8): 998.

[18] JIANGY, KUANG Cui-Fang, LI Shuai, et al. Arbitrary three-dimensional polarization control based on cylindrical vector beams and binary phase coding[J]. Journal of Modern Optics, 2014, 61(4): 328-334.

[19] OLKP, HARTLINGT, KULLOCKR, et al. Three-dimensional, arbitrary orientation of focal polarization[J]. Applied Optics, 2010, 49(23): 4479.

[20] RICHARDSB, WOLF E. Electromagnetic diffraction in optical systems. II. structure of the image field in an aplanatic system[C]. Proceedings of the Royal Society of London, 1959, 253(1274): 358-379.

[21] YOUNGRWORTH K S, BROWN T G. Focusing of high numerical aperture cylindrical vector beams[J]. Optics Express, 2000, 7(2): 77-87.

王潇, 杨凤, 尹建华. 显微物镜聚焦光场任意三维偏振方向的控制[J]. 光子学报, 2017, 46(12): 1226002. WANG Xiao, YANG Feng, YIN Jian-hua. Arbitrary Three Dimensional Polarization Direction Control at Focal Field of a Microscope Objective[J]. ACTA PHOTONICA SINICA, 2017, 46(12): 1226002.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!