光子学报, 2018, 47 (10): 1022001, 网络出版: 2018-12-18   

可变焦距的非球面复眼优化及定位技术

Aspherical Compound Eye Optimization and Positioning Technology with Variable Focal Length
作者单位
1 沈阳理工大学 装备工程学院, 沈阳 110159
2 沈阳理工大学 机械工程学院, 沈阳 110159
摘要
提出一种新型可变焦非球面人工复眼结构,该结构将曲面复眼划分为三个扇形区域, 不同区域内的微透镜焦距不同, 使得人工复眼能够在一定范围内实现焦距调节.通过计算及仿真分析, 对各级微透镜结构进行非球面优化, 优化后各级微透镜的球差值为优化前的1/1000, 提高了曲面复眼的边缘成像质量.采用模压成型工艺制备得到子眼个数为61,基底直径为8.66 mm的变焦距非球面人工复眼样品, 并标定各子眼的相互位置, 建立多个子眼同时识别目标的定位数学模型.搭建了人工复眼成像性能测试及目标定位测试平台进行实验验证, 实验表明人工复眼相机能够捕获清晰的圆形和十字型光斑图像, 各扇形区域内采集的图像尺寸不同, 能够实现一定范围内变焦成像.通过多个微透镜捕捉目标,利用入射角度与像点重心之间的关系解出目标点坐标, 实验结果的定位误差值在10%以内.
Abstract
A new type of aspheric artificial compound eye with variable focal length was proposed.The structure divides the curved compound eye into three fan shaped areas, and the focal lengh of the microlens in different areas is different, so that the artificial compound eye can achieve the focal length adjustment within a certain range.Through calculation and simulation analysis, aspheric surface optimization is carried out for the microlens structure at all levels. After optimization, the spherical difference value of each level of micrilens is 1/1000 before optimization, which improved the edge image quality of curved compound eyes. The aspherical artificial compound eye sample with the number of eyes of 61 and the diameter of the base of 8.66 mm is prepared by using the molding method. Calibrating the mutual relationship between the eyes of the child and establishing a mathematical model for the simultaneous identification of multiple sub eyes. The artificial compound eye imaging performance test and target positioning test platform are built. Through experimental verification, the artificial compound eye camera can acquire clear circular and cross-shaped light spot images. The size of images collected in each sector area is different, and the zoom imaging can be realized within a certain range. By capturing the target with multiple microlenses and the relationship between the incident angle and the center of gravity of the image point, the coordinates of the target point are calculated. The experimental results show that the positioning error value is less than 10%.
参考文献

[1] 郝永平, 李伦.仿生复眼结构设计及其成像系统研究新进展[J].激光与红外, 2015, 45(12): 1407-1412.

    HAO Yong-ping, LI Lun.New progress in structure design and imaging systems of artificial compound eye[J]. Laser&Inrared,2015,45(12):1407-1412.

[2] 陈成, 梁静秋, 梁中翥,等. 微小型静态傅里叶变换红外光谱仪中复眼缩束系统的光学设计及仿真研究[J].光学学报, 2015, 35(11):268-276.

    CHEN Cheng, LIANG Jing-qiu, LIANG Zhong-zhu,et al. Design and analysis of the expansion compound eye used in micro-miniature statics fourier transform infrared spectrometer[J].Acta Optica Sinica, 2015, 35(11):268-276.

[3] 郝永平, 李伦, 于军波. 非球面复眼设计及其制备工艺研究[J].激光与红外, 2016, 46(6): 727-730.

    HAO Yong-ping, LI Lun, YU Jun-bo.Design and preparation of aspherical compound eye[J]. Laser&Inrared, 2016, 46(6):727-730

[4] 郭书基, 史立芳, 曹阿秀, 等. 基于大视场人工复眼定位技术[J].光子学报, 2016,45(5):0512003.

    GUO Shu-ji, SHI Li-fang, CAO A-xiu, et al. Study of large field of view compound-eye orientation technology[J]. Acta Photonica Sinica, 2016,45(5):0512003.

[5] 邹成刚.仿生复眼的光学设计与模拟仿真[D]天津:天津大学,2013.

    ZOU Cheng-gang. Optical design and simulation of the artificial compound eyes[D].Tianjin: Tianjin University,2013.

[6] LEE H N, JANG H, PARK S,et al. COMPU-EYE: a high resolution computational compound eye[J]. Optics Express, 2016, 24(3):2013.

[7] BRADYD J, GEHM M E, STACK R A, et al. Multiscale gigapixel photography[J]. Nature, 2012, 486(7403): 386-389.

[8] MARKS D L, BRADY D J. Wide-field astronomical multiscale cameras[J]. Astronomical Journal, 2013,145(5):1069-1094.

[9] FLOREANO D, PERICET-CAMARA R, VIOLLET S, et al. Miniature curved artificial compound eyes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013,110(23): 9267-9272.

[10] SONG Y M, XIE Y Z, MALYARCHUK V, et al. Digital cameras with designs inspired by the arthropod eye[J]. Nature, 2013,497(7447):95-99.

[11] LI Z W, XIAO J L. Mechanics and optics of stretchable elastomeric microlens array for artificial compound eye camera[J]. Journal of Applied Physics, 2015, 117(1),557.

[12] 雷卫宁,郭云芝,高挺挺.基于仿生复眼的大视场探测系统结构研究[J].光学与光电技术,2016,14(3):62-66.

    LEI Wei-ning, GUO Yun-zhi, GAO Ting-ting. Study on the structure of large field view detection system based on bionic compound eye[J]. Optics Optoelectronic Technology, 2016, 14(03): 62-66.

[13] 曹兆楼, 詹珍贤, 王克逸.用于运动目标探测的球面复眼透镜的结构设计[J].红外与激光工程, 2011,40(1):70-73.

    CAO Zhao-lou, ZHAN Zhen-xian, WANG Ke-yi. Structure design of spherical compound eye lens for moving objectdetection[J]. Infrared and Laser Engineering, 2011,40(1):70-73.

[14] 郝永平, 赵龙飞, 张嘉易. 非球面变焦距曲面复眼的优化研究[J]. 红外与激光工程, 2015, 44(1): 157-161.

    HAO Yong-ping, ZHAOLong-fei, ZHANG Jia-yi. Optimal research of aspherical zoom curved compound eye[J]. Infrared and Laser Engineering,2015,44(1): 157-161.

[15] 郭方, 王克逸, 闫佩正, 等.用于大视场目标定位的复眼系统标正[J].光学·精密工程, 2012, 20(5): 913-920.

    GUO Fang, WANG Ke-yi, YAN Pei-zheng, et al. Calibration of compound eye system for target positioning with large field of view[J]. Optics and Precison Engineering, 2012,20(5):913-920.

[16] ZHANG K, JUNG Y H, MIKAEL S, et al. Origami silicon optoelectronics for hemispherical electronic eye systems. [J] Nature Communications, 2017, 8(1), 1782.

李伦, 郝永平, 刁晓蕾, 刘凤丽. 可变焦距的非球面复眼优化及定位技术[J]. 光子学报, 2018, 47(10): 1022001. LI Lun, HAO Yong-ping, DIAO Xiao-lei, LIU Feng-li. Aspherical Compound Eye Optimization and Positioning Technology with Variable Focal Length[J]. ACTA PHOTONICA SINICA, 2018, 47(10): 1022001.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!