光子学报, 2018, 47 (3): 0329001, 网络出版: 2018-02-01   

火星沙尘气溶胶对激光传输特性的影响

Influence of Martian Dust Aerosol on Laser Transmission Characteristics
作者单位
1 西安理工大学 自动化与信息工程学院, 西安 710048
2 国家电网河北省电力公司检修分公司, 石家庄 050070
摘要
对火星沙尘气溶胶粒子进行分析, 利用对数正态分布拟合了火星沙尘的尺寸分布.分别用Mie理论和Monte Carlo方法研究了不同波长的激光在火星沙尘条件下的传输特性, 分析了火星上沙尘条件下的传输衰减、透射率和能见度随粒子质量浓度的变化关系, 给出了波长为0.55 μm时能见度随粒子质量浓度的变化曲线, 并将两种方法的计算结果进行了比较.结果表明: 随着粒子质量浓度的增加, 能见度先迅速降低后再缓慢降低并趋于2 km左右, 粒子浓度越高多次散射现象越明显, 利用Monte Carlo方法计算的能见度比Mie理论计算的结果更高.在选择的几个波长中, 沙尘条件下7.46 μm的激光传输衰减最小, 因此更适合火星无线激光通信.
Abstract
The properties of the martian dust aerosols was studied, and the log-normal distribution of particle sizes was used to fit the particle size distribution of the martian dust aerosols.The transmission characteristics of laser with different wavelength were studied by using Mie theory and Monte Carlo method. Under the condition of dust, the variety of the visibility, transmissivity and attenuation with particle mass concentration was analyzed.The curve of visibility along with particle mass concentration at wavelength of 0.55 μm was given, and the calculation results of Mie theory and Monte Carlo method were compared. The results show that the visibility drops rapidly and then decreases slowly and tend to be about 2km with the increase of particle mass concentration.The higher the particle concentration is, the more obvious the phenomenon of multiple scattering is,and the visibility calculated by Monte Carlo method is higher than Mie theory. In the several selected wavelengths, the laser transmission attenuation at wavelengths of 7.46 μm is minimal under the condition of dust,so it is the most suitable for wireless laser communication on Mars.
参考文献

[1] STEINBACHER R H, KLIORE A, LORELL J, et al. Mariner 9 science experiments: preliminary results[J]. Science, 1972, 175(4019): 293.

[2] CANTOR B A, JAMES P B, CAPLINGER M, et al. Martian dust storms: 1999 Mars orbiter camera observations[J]. Journal of Geophysical Research Planets, 2001, 106(E10): 23653-23687.

[3] CLANCY R T, LEE S W, GLADSTONE G R, et al. A new model for Mars atmospheric dust based upon analysis of ultraviolet through infrared observations from Mariner 9, Viking, and Phobos[J]. Journal of Geophysical Research Planets, 1995, 100(E3): 5251-5263.

[4] TOON O B, POLLACK J B, SAGAN C. Physical properties of the particles composing the Martian dust storm of 1971-1972[J]. Icarus, 1977, 30(4): 663-696.

[5] TOMASKO M G, DOOSE L R, LEMMON M, et al. Properties of dust in the Martian atmosphere from the Imager on Mars Pathfinder[J]. Journal of Geophysical Research Planets, 1999, 104(E4): 8987-9007.

[6] POLLACK J B, OCKERT‐BELL M E, SHEPARD M K. Viking Lander image analysis of Martian atmospheric dust[J]. Journal of Geophysical Research Planets,1995, 100(E3): 5235-5250.

[7] ELTETO A, TOON O B. Retrieval algorithm for atmospheric dust properties from Mars Global Surveyor Thermal Emission Spectrometer data during global dust storm 2001A[J]. Icarus, 2010, 210(2): 566-588.

[8] WOLFF M J, CLANCY R T. Constraints on the size of Martian aerosols from Thermal Emission Spectrometer Observations[J]. Journal of Geophysical Research Planets, 2003, 108(E9): 5097.

[9] WOLFF M J, SMITH M D, CLANCY R T, et al. Constraints on dust aerosols from the Mars Exploration Rovers using MGS overflights and Mini‐TES[J]. Journal of Geophysical Research Planets, 2006, 111(E12): 41-51.

[10] FEDOROVA A A, MONTMESSIN F, RODIN A V, et al. Evidence for a bimodal size distribution for the suspended aerosol particles on Mars[J]. Icarus, 2014, 231(231): 239-260.

[11] HANSEN, J. E,TRAVIS L. D.Light scattering in planetary atmospheres[J].Space Science Reviews,1974,16: 527-560

[12] MONTMESSIN F, RANNOU P, CABANE M. New insights into Martian dust distribution and water‐ice cloud microphysics[J]. Journal of Geophysical Research Planets, 2002, 107(E6): 4-1-4-14.

[13] MISHCHENKO M I, DLUGACH J M, YANOVITSKIJ E G, et al. Bidirectional reflectance of flat, optically thick particulate layers: an efficient radiative transfer solution and applications to snow and soil surfaces[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 1999, 63(2-6): 409-432.

[14] OCKERTBELL M E, RD B J, POLLACK J B, et al. Absorption and scattering properties of the Martian dust in the solar wavelengths.[J]. Journal of Geophysical Research Atmospheres, 1997, 102(E4): 9039-9050.

[15] 吴振森,由金光,杨瑞科.激光在沙尘暴中的衰减特性研究[J]. 中国激光, 2004, 31(9): 1075-1080.

    WU Zhen-sen, YOU Jin-g uang, YANG Rui-ke. Study on laser attenuation character in sand and dust storms[J]. Chinese Journal of Lasers, 2004, 31(9): 1075-1080.

杨玉峰, 秦建华, 王昭雷. 火星沙尘气溶胶对激光传输特性的影响[J]. 光子学报, 2018, 47(3): 0329001. YANG Yu-feng, QIN Jian-hua, WANG Zhao-lei. Influence of Martian Dust Aerosol on Laser Transmission Characteristics[J]. ACTA PHOTONICA SINICA, 2018, 47(3): 0329001.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!