光子学报, 2019, 48 (10): 1001002, 网络出版: 2019-11-14   

超连续谱激光在湍流大气中传输特性的数值仿真研究

Numerical Simulation of Propagation Performance of Super-continuum Laser in Turbulent Atmosphere
作者单位
1 中国科学院安徽光学精密机械研究所 中国科学院大气光学重点实验室,合肥 230031
2 中国科学技术大学 研究生院科学岛分院,合肥 230026
摘要
采用多层相位屏的数值仿真方法,综合考虑大气衰减效应和湍流效应,研究了不同湍流强度和不同源相干度条件下超连续谱激光的光束扩展、光斑漂移以及闪烁特性,并对比分析了超连续谱激光传输与单色激光传输特性的差异.结果表明:湍流越强或源相干度越好,超连续谱激光的相对光束扩展越严重;湍流愈强,光斑漂移愈严重,但不同源相干度的超连续谱激光的质心漂移方差几乎相等;降低超连续谱激光的源相干度可以在一定程度上减弱光强起伏的闪烁效应,并降低闪烁指数对离轴距离的依赖性;与单色激光相比,湍流对超连续谱激光的光束扩展以及闪烁效应影响较弱,而质心漂移效应两者差异不明显.单色激光大气传输的数值仿真结果与理论解析结果基本吻合,在一定程度上说明了数值仿真过程的可靠性.该研究不仅提出了一种获得超连续谱激光大气传输特性规律的有效仿真手段,而且为超连续谱激光传输的工程应用提供参考.
Abstract
Considering the atmospheric extinction and turbulent effects, beam spreading, beam wandering and intensity scintillation of super-continuum laser propagating in atmospheric turbulence are studied by using multi-phase screen simulation method. And the difference of propagation properties between super-continuum laser and monochrome laser is analyzed. The simulation results show that, to super-continuum source, with the increase of turbulence strength or the increase of source coherence, relative beam spreading becomes more serious. As turbulence strength increases, beam wandering becomes more pronounced. And the RMS of beam wandering is insensitive to the variation of source coherent degree. Scintillation index and the dependence of scintillation index on off-axis distance may decline by reducing source coherence. Compared with the monochromatic laser, the relative beam spreading and intensity scintillation of super-continuum laser are less affected by turbulence, while the difference of beam wandering is not obvious. The agreement between results of numerical simulations and the theoretical analysis results of monochromatic laser propagating in atmospheric turbulence illustrated the reliability of the numerical simulation process. This study not only proposes an effective simulation method to obtain the atmospheric propagation characteristics of super-continuum laser, but also provides meaningful reference for the application of super-continuum laser.
参考文献

[1] 陈胜平, 谌鸿伟, 侯静, 等. 30W 皮秒脉冲光纤激光器及高功率超连续谱的产生[J]. 中国激光, 2010, 37(8): 1943-1949.

    CHEN Sheng-ping, CHEN Hong-wei, HOU Jing, et al. 30W picosecond pulsed fiber laser and high power supercontinuum generation[J]. Chinese Journal of Lasers, 2010, 37(8): 1943-1949.

[2] 谌鸿伟, 郭良, 侯静, 等. 基于光子晶体光纤的百瓦量级超连续谱光源研究[J]. 物理学报, 2013, 62(15): 154207.

    CHEN Hong-wei, GUO Liang, HOU Jing, et al. Investigation of hundred-watt-level supercontinuum generation in photonic crystal fiber[J]. Acta Physica Sinica, 2013, 62(15): 154207.

[3] 侯静, 陈胜平, 陈子伦, 等. 高功率超连续谱光源研究进展与关键技术分析[J]. 激光与光电子学进展, 2013, 50:080010.

    HOU Jing, CHEN Sheng-ping, CHEN Zi-lun, et al. Recent developments and key technology analysis of high power supercontinuum source[J]. Laser and Optoelectronics Progress, 2013, 50: 080010.

[4] 殷科, 张斌, 陈胜平, 等. 203w 2~2.5 mm光谱平坦型超连续谱激光光源[J]. 中国激光, 2016, 43(6):0615003.

    YIN Ke, ZHANG Bin, CHEN Sheng-ping, et al. 203w 2~2.5mm Spectral flatness supercontinuum source[J]. Chinese Journal of Lasers, 2016, 43(6): 0615003.

[5] 宋锐, 侯静, 陈胜平, 等. 177.6 W 全光纤超连续谱光源[J]. 物理学报, 2012, 61(5): 054217.

    SONG Rui, HOU Jing, CHEN Sheng-ping, et al. All-fiber 177.6 W supercontinuum source[J]. Acta Physica Sinica, 2012, 61(5): 054217.

[6] 杨未强, 张斌, 侯静, 等. 国内首次实现瓦级全光纤中红外超连续谱光源[J]. 中国激光, 2013, 40(4):0402009.

    YANG Mo-qiang, ZHANG Bin, HOU Jing, et al. Frist realization of Watt level all-fiber mid-infrared supercontinuum source[J]. Chinese Journal of Lasers, 2013, 40(4): 0402009.

[7] 刘江, 刘昆, 师红星, 等. 高功率全光纤中红外超连续谱激光源[J].中国激光, 2014,41(9):0902004.

    LIU Jiang, LIU Kun, SHI Hong-xing, et al. High power all-fiber mid-infrared supercontinuum laser source[J]. Chinese Journal of Lasers, 2014, 41(9): 0902004.

[8] 董克攻, 张昊宇, 黎玥, 等. 全光纤白光超连续谱实现563W输出[J]. 强激光与粒子束, 2018, 30(10):100101.

    DONG Ke-gong, ZHANG Hao-yu, LI Yue, et al. Generation of 563W all-fiber white-light supercontinuum source[J]. High Power Laser and Particle Beams, 2018, 30(10): 100101.

[9] ALFANO R R. The Supercontinuum laser source[M]. 2nd ed. New York: Springer Science+ Business Media, 2006: 377-398.

[10] FLATTE′ S M, MARTIN J, WANG G Y. Irradiance variance of optical waves through atmospheric turbulence by numerical simulation and comparison with experiment[J]. Journal of the Optical Society of America A, 1993, 10(10): 2363-2370.

[11] QIAN X M, ZHU W Y, RAO R Z. Intensity distribution properties of gaussian vortex beam propagation in atmospheric turbulence[J]. Chinese Physics B, 2015, 24(4): 044201.

[12] MARTIN J M, FLATTEˊ S M. Simulation of point-source scintillation through three-dimensional random media[J]. Journal of the Optical Society of America A, 1990, 7(7): 838-847.

[13] 杨婷, 季小玲. 激光通过非Kolmogorov大气湍流传输光束扩展区间的研究[J]. 光学学报, 2015, 35(5):0501001.

    YANG Ting, JI Xiao-ling. Regions of spreading of laser beams propagating through non-kolmogorov atmospheric turbulence[J]. Acta Optica Sinica, 2015, 35(5): 0501001.

[14] 卢芳, 赵丹, 刘春波, 等. 非Kolmogorov大气湍流对高斯阵列光束光强闪烁的影响[J]. 红外与激光工程, 2016, 45(7):0711001.

    LU Fang, ZHAO Dan, LIU Chun-bo, et al. Influence of non-kolmogorov atmospheric turbulence on scintillation of gaussian array beams[J]. Infrared and Laser Engineering, 2016, 45(7): 0711001.

[15] 孙日东, 郭立新, 程明建,等. 贝赛尔高斯光束在各向异性湍流中的传输特性[J]. 光子学报, 2018, 47(12): 1201002.

    SUN Ri-dong, GUO Li-xin, CHENG Ming-jian, et al. Propagation characteristics of bessel-gaussian beam in anisotropic atmosphere[J]. Acta Photonica Sinica, 2018, 47(12): 1201002.

[16] 李志鸿, 周朴, 曹涧秋, 等. 大气湍流对超连续谱Strehl比影响的数值模拟[J].红外与激光工程,2010, 39: 104-107.

    LI Zhi-hong, ZHOU Pu, CAO Jian-qiu, et al. Numerically studying the influence of turbulence on the strehl ratio of supercontinua[J]. Infrared and Laser Engineering, 2010, 39: 104-107.

[17] 孙海跃, 吴武明, 靳爱军, 等. 非科尔莫哥罗夫湍流下超连续谱光源的传输特性[J]. 中国激光, 2014, 41(4): 0413001.

    SUN Hai-yue, WU Wu-ming, JIN Ai-jun, et al. Propagation performance of supercontinuum source in non-kolmogorov turbulence[J]. Chinese Journal of Lasers, 2014, 41(4): 0413001.

[18] 康丽.超连续谱激光大气传输特性研究[D] 合肥: 中国科学院合肥物质科学研究院, 2015:47-58.

    KANG Li. Propagationperformance of supercontinuum source in atmosphere[D]. Hefei: Hefei Institutes of Physical Science, Chinese Academy of Sciences, 2015:47-58.

[19] MARTIN J M, FLATTE′ S M. Intensity images and statistics from numerical simulation of wave propagation in 3-D random media[J].Applied Optics, 1988, 27(11): 2111-2126.

[20] 饶瑞中. 现代大气光学[M]. 北京: 科学出版社, 2011.

    RAO Rui-zhong . Modern atmospheric optics[M]. BeiJing: Science Press, 2011.

[21] FREHLICH R. Simulation of laser propagation in a turbulent atmosphere[J]. Applied Optics, 2000, 39(3): 393-397.

[22] 张建柱, 张飞舟, 吴毅. 大气湍流随机相屏模拟方法研究[J]. 强激光与粒子束, 2012, 24(10):2318-2324.

    ZHANG Jian-zhu, ZHANG Fei-zhou, WU Yi. Methods for simulating turbulent phase screen[J]. High Power Laser And Particle Beams, 2012, 24(10): 2318-2324.

[23] XIAO X F, DAVID V. Wave optics simulation approach for partial spatial coherent beams[J]. Optics Express, 2006, 14(16): 6986-6992.

[24] WANG S C H, PLONUS M A. Optical beam propagation for a partially coherent source in the turbulent atmosphere[J]. Journal of the Optical Society of America, 1979, 69(9): 1297-1304.

[25] QIAN X M, ZHU W Y, RAO R Z. Long-distance propagation of pseudo-partially coherent gaussian Shell-model beams in atmospheric turbulence[J].Chinese. Physics. B, 2012, 21(9): 094202.

[26] 钱仙妹, 朱文越, 黄印博, 等.激光湍流大气传输数值模拟中计算参数的选取[J].光子学报,2008,37(10):1987-1991 .

    QIAN Xian-mei, ZHU Wen-yue, HUANG Yin-bo, et al. Selection of computing parameters in numerical simulation of laser beam propagation in turbulent atmosphere[J]. Acta Photonica Sinica, 2008, 37(10): 1987-1991.

[27] 钱仙妹, 饶瑞中. 高斯光束大气闪烁空间分布的数值模拟研究[J]. 量子电子学报, 2006, 23(3): 321-324.

    QIAN Xian-mei, RAO Rui-zhong. Spatial distribution of gaussian-beam scintillation in atmosphere by numerical simulation[J]. Chinese Journal of Quantum Electronics, 2006, 23(3): 321-324.

[28] FANTE R L. Electromagnetic beam propagation in turbulent media[C]. IEEE Proceedings, 1975, 23(12): 1669-1692.

李雅倩, 朱文越, 钱仙妹. 超连续谱激光在湍流大气中传输特性的数值仿真研究[J]. 光子学报, 2019, 48(10): 1001002. LI Ya-qian, ZHU Wen-yue, QIAN Xian-mei. Numerical Simulation of Propagation Performance of Super-continuum Laser in Turbulent Atmosphere[J]. ACTA PHOTONICA SINICA, 2019, 48(10): 1001002.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!