光子学报, 2019, 48 (11): 1148017, 网络出版: 2019-12-10   

光子集成射频自干扰消除系统性能仿真分析

Simulation and Performance Analysis of Photonic Integrated RF Self-interference Cancellation System
作者单位
1 大连理工大学 光电工程与仪器科学学院, 辽宁 大连 116024
2 空间微波技术国家重点实验室,西安 710000
摘要
针对全双工通信系统设计了光子集成射频自干扰消除功能芯片.该芯片采用相位调制将射频信号转换至光域,在光域内进行光载射频信号的幅相调控以实现干扰对消功能.对功能芯片中主要功能单元进行优化设计后,延时调谐范围为0~10 ps, 30 GHz带宽内的延时抖动小于0.1 ps; 滤波响应阻带抑制度为36.5 dB,通带带宽为60.6 GHz,边沿陡峭度为9.2 dB/GHz.建立了光子集成芯片射频自干扰消除系统的理论模型,对功能芯片中可调光延时线、可调光衰减器及滤波器等引入的延时、幅度不匹配对系统消除性能的影响进行了仿真分析.结果表明,幅度失配量为0.02 dB时,2 GHz带宽信号下系统抑制度为-42.7 dB; 延时抖动为0.07 ps时,2 GHz带宽信号下系统的抑制度为-37 dB.研究结果可为光子集成射频干扰抑制功能芯片的研制提供参考.
Abstract
A photonic integrated radio frequency self-interference cancellation chip is designed for full-duplex communication. The radio frequency signals are converted into the optical domain by phase modulation, and the amplitude and phase tuning of the optical carried radio frequency signals is implemented to realize the radio frequency self-interference cancellation function. The optimally designed structural parameters of the cascaded ring are presented. The time delay tuning range is 0 to 10 ps with the delay jitter less than 0.1 ps over 30 GHz bandwidth. For filtering response, the stopband rejection is 36.5 dB, the passband bandwidth is 60.6 GHz, and the steepness of the edge is 9.2 dB/GHz. The theoretical model of the photonic integrated radio frequency self-interference cancellation system is established. The influence of time delay and amplitude mismatch caused by optical delay line, tunable optical attenuator and filter on the radio frequency self-interference cancellation performance is analyzed. With the amplitude mismatch of 0.02 dB, the cancellation depth is -42.7 dB over the bandwidth of 2 GHz. With the time delay deviation of 0.07 ps, the cancellation depth is -37 dB over the bandwidth of 2 GHz. This work paves the way for fabricating the photonic integrated function chip.
参考文献

[1] JAIN M, CHOI J I, KIM T M, et al. Practical, real-time, full duplex wireless[C]. Proceedings of the 17th Annual International Conference on Mobile Computing and Networking, 2011, 301-312.

[2] SHARMA S K, BOGALE T E, LE L B,et al. Dynamic spectrum sharing in 5G wireless networks with full-duplex technology: recent advances and research challenges[J]. IEEE Communications Surveys & Tutorials, 2018, 20(1): 674-707.

[3] SABHARWAL A, SCHNITER P, GUO D,et al. In-band full-duplex wireless: challenges and opportunities[J]. IEEE Journal on Selected Areas in Communications, 2014, 32(9): 1637-1652.

[4] CHOI J I, JAIN M, SRINIVASAN K,et al. Achieving single channel, full duplex wireless communication[C]. Proceedings of the 16th Annual International Conference on Mobile Computing and Networking, 2010: 1-12.

[5] BOUDREAU G, PANICKER J, GUO N,et al. Interference coordination and cancellation for 4G networks[J]. IEEE Communications Magazine, 2009, 47(4): 74-81.

[6] HONG S, BRAND J, CHOI J I,et al. Applications of self-interference cancellation in 5G and beyond[J]. IEEE Communications Magazine, 2014, 52(2): 114-121.

[7] CHANG M P, FOK M, HOFMAIER A,et al. Optical analog self-interference cancellation using electro-absorption modulators[J]. IEEE Microwave and Wireless Components Letters, 2013, 23(2): 99-101.

[8] ZHANG Y, XIAO S, FENG H, et al. Self-interference cancellation using dual-drive Mach-Zehnder modulator for in-band full-duplex radio-over-fiber system[J]. Optics Express, 2015, 23(26): 33205-33213.

[9] HAN X Y, HUO B F, SHAO Y C, et al. Optical RF self-interference cancellation by using an integrated dual-parallel MZM[J].IEEE Photonics Journal, 2017, 9(2): 5501308.

[10] XIANG Y, LI G X, PAN S L. Ultrawideband optical cancellation of RF interference with phase change[J]. Optics Express, 2017, 25(18): 302162.

[11] HUANGL, ZHANG Y, XIAO S, et al. Real-time adaptive optical self-interference cancellation system for in-band full-duplex transmission[J]. Optics Communications, 2019, 437(15): 259-263.

[12] CHENY, PAN S. Simultaneous wideband radio-frequency self-interference cancellation and frequency downconversion for in-band full-duplex radio-over-fiber systems[J]. Optics Letters, 2018, 43(13): 3124-3127.

[13] SUAREZ J, PRUCNAL P R. Instantaneous bandwidth of counter-phase optical interference cancellation for RF communications[J]. IEEE Microw. Wireless Components Letters, 2011, 21(9): 507-509.

[14] YU Y H, ZHANG Y H, HUANG L, et al. Performance analysis of an optical self-interference cancellation system with a directly modulated laser-based demonstration[J]. Applied Optics, 2018, 57(6): 1284-1291.

[15] MARPAUNG D, YAO J P, CAPMANY J. Integrated microwave photonics[J]. Nature Photonics, 2019, 13: 80-90.

[16] CHANG M P, BLOW E C, SUN J J,et al. Integrated microwave photonic circuit for self-interference cancellation[J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(11): 4493-4501.

[17] CHANG M P, BLOW E C, LU M Z,et al. RF characterization of an integrated microwave photonic circuit for self-interference cancellation[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(1): 596-605.

[18] SHI N N, SONG Q, TANG J, et al, A switchable self-interference cancellation system for dual-band IBFD system using a monolithic integrated DML array[J]. Optics Communications, 2019, 447(15): 55-60.

[19] HAN X Y, HUO B F, SHAO Y C, et al. RF self-interference cancellation using phase modulation and optical sideband filtering[J]. IEEE Photonics Technology Letters, 2017, 29(11): 917-920.

[20] RICKMAN A. The commercialization of silicon photonics[J].Nature Photonics, 2014, 8: 579-582.

[21] MORTON P A, CARDENAS J, KHURGIN J B,et al. Fast thermal switching of wideband optical delay line with no long-term transient [J]. IEEE Photonics Technology Letters, 2012, 24(6), 512-514.

[22] YARIV A. Universal relations for coupling of optical power between microresonators and dielectric waveguides [J]. Electronics Letters, 2000, 36(4): 321-3223.

[23] LUO L W, IBRAHIM S, NITKOWSKI A,et al. High bandwidth on-chip silicon photonic interleaver[J]. Optical Society of America, 2010, 18(22): 23079-23087.

[24] HAN X Y, WANG L H, WANG Y, et al. UV-soft imprinted tunable polymer waveguide ring resonator for microwave photonic filtering[J]. IEEE J. Lightwave of Technology, 2014, 32(20): 3924-3932.

[25] OPPENHEIM A V. Signals and systems, second edition [M]. Beijing: Publishing House of Electronics Industry, 2013.

[26] CHI H, ZOU X H, YAO J P. Analytical models for phase-modulation-based microwave photonic systems with phase modulation to intensity modulation conversion using a dispersive device[J]. IEEE Journal of Lightwave of Technology, 2009, 27(5): 511-521.

[27] XIE J Y, ZHOU L J, LI Z X, et al. Seven-bit reconfigurable optical true time delay line based on silicon integration[J]. Optica Express, 2014, 22(19): 22707-22715.

申芳芳, 苏鑫鑫, 付双林, 李朝, 杨思成, 武震林, 谷一英, 谭庆贵, 朱舸, 赵明山, 韩秀友. 光子集成射频自干扰消除系统性能仿真分析[J]. 光子学报, 2019, 48(11): 1148017. SHEN Fang-fang, SU Xin-xin, FU Shuang-lin, LI Chao, YANG Si-cheng, WU Zhen-lin, GU Yi-ying, TAN Qing-gui, ZHU Ge, ZHAO Ming-shan, HAN Xiu-you. Simulation and Performance Analysis of Photonic Integrated RF Self-interference Cancellation System[J]. ACTA PHOTONICA SINICA, 2019, 48(11): 1148017.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!