红外与毫米波学报, 2018, 37 (1): 50, 网络出版: 2018-03-14   

光子晶体粗波分-模分混合复用/解复用器

Coarse wavelength-mode-division hybrid multiplexer/de-multiplexer of photonic crystal
作者单位
1 南京邮电大学 电子与光学工程学院微电子学院,江苏 南京 210023
2 南京邮电大学 贝尔英才学院,江苏 南京 210023
摘要
提出了一种基于光子晶体的粗波分-模分混合复用/解复用器,可在光子晶体上实现波分-模分的一体集成.根据时域耦合模理论,该器件采用点缺陷微腔和波长选择反射微腔的结构实现滤波.根据横向耦合模理论,利用非对称平行波导的结构实现模式转换.应用时域有限差分法对其性能进行分析,仿真结果表明,该器件可以实现1550 nmTE0模、1570 nmTE0模、1550 nmTE1模和1570 nmTE1模四个信道信号的复用和解复用,且具有较低的插入损耗(< 0.23 dB)和信道串扰(<-15.21 dB),该器件在CWDM-MDM中有重要作用,对提升城域网的容量具有重要价值.
Abstract
In this paper, based on photonic crystal (PC), a coarse-wavelength-mode-division hybrid multiplexer/de-multiplexer is proposed. The coarse wavelength division multiplexing (CWDM) and mode division multiplexing (MDM) can be integrated on a chip of PC. According to coupled mode theory in time, point-defect cavities and wavelength-selective cavities were introduced in the PC to filter the optical wave. According to the lateral coupled mode theory, asymmetric parallel waveguides (APWs) consisted of single-mode waveguides (SMWs) and multi-mode waveguides (MMWs) were introduced in the PC to achieve mode conversion. The finite-difference time-domain (FDTD) method is used for property analysis. The simulation results show that the device achieves the multiplexing/de-multiplexing of four signals, i.e., the 1550 nm TE0 mode, 1570 nm TE0 mode, 1550 nm TE1 mode and 1570 nm TE1 mode. The device exhibits not only a low insertion loss (<0.23 dB) but also low mode crosstalk (<-15.21 dB). It has considerable potential for application in the CWDM-MDM system and great value to improve the capacity of metropolitan area network.
参考文献

[1] ZHOU Wen, CHEN He-Ming. Mode division multiplexing of two-dimensional triangular lattice photonic crystal based on magneto-optical effect [J]. Acta Physica Sinica, (周雯,陈鹤鸣. 基于磁光效应的二维三角晶格光子晶体模分复用器. 物理学报), 2015, 64(6) : 64210-64216.

[2] Wu Y, Chiang K S. Mode-selective coupling between few-mode fibers and buried channel waveguides [J]. Optics Express, 2016, 24(26): 30108-30123.

[3] Dideban A, Habibiyan H, Ghafoorifard H. Photonic crystal channel drop filters based on fractal structures [J]. Physica E: Low-dimensional Systems and Nanostructures, 2014, 63(9): 304-310.

[4] Charalambous G, Hasanuzzaman G K M, Perentos A, et al. High-Q wavelength division multiplexed optoelectronic oscillator based on a cascaded multi-loop topology [J]. Optics Communications, 2017, 387: 361-365.

[5] Luo L W, Ophir N, Chen C P, et al. WDM-compatible mode-division multiplexing on a silicon chip [J]. Nature Communications, 2014, 5(2):3069-3077.

[6] YANG Yue-De, LI Yu, HUANG Yong-Zhen, et al. Silicon nitride three-mode division multiplexing and wavelength-division multiplexing using asymmetrical directional couplers and microring resonators [J]. Optics Express, 2014, 22(18): 22172-22183.

[7] WANG Jian, CHEN Si-Tao, DAI Dao-Xin. Silicon hybrid demultiplexer with 64 channels for wavelength/mode-division multiplexed on-chip optical interconnects [J]. Optics Letters, 2014, 39(24): 6993-6996.

[8] Mulugeta T, Rasras M. Silicon hybrid (de)multiplexer enabling simultaneous mode and wavelength-division multiplexing[J]. Optics Express, 2015, 23(2): 943-949.

[9] LI Zhao-Song, LU Dan, ZUO Bing, et al. Proposal of an InP-based few-mode transmitter based on multimode interference couplers for wavelength division multiplexing and mode division multiplexing applications [J]. Chinese Optics Letters, 2016, 14(8): 22-26.

[10] CHEN He-Ming, SU Jian, Wang Jing-Li, et al. Optically-controlled high-speed terahertz wave modulator based on nonlinear photonic crystals [J]. Optics Express, 2011, 19(4): 3599-3603.

[11] ZHUANG Yu-Yang, ZHOU Wen, JI Ke, et al. A narrow bandpass filter based on two-dimensional photonic crystals with two reflectors [J]. Acta Physica Sinica, (庄煜阳,周雯, 季珂,等. 一种双反射壁型二维光子晶体窄带滤波器. 物理学报)2015, 64(22): 224202-224207.

[12] Jiang C, Ren H, Wang J, et al. Photonic crystal channel drop filter with a wavelength-selective reflection micro-cavity [J]. Optics Express, 2006, 14(6):2446-2458.

[13] QIAN Jing-Ren. Coupled-mode theory and its application to fiber optics [J]. Acta Optica Sinica, (钱景仁. 耦合模理论及其在光纤光学中的应用. 光学学报)2009, 29(5): 1188-1192.

[14] John S. Strong localization of photons in certain disordered dielectric super lattices [J]. Physical Review Letters. 1987, 58(23): 2486.

[15] Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronic [J]. Physical Review Letters. 1987, 58(20):2059.

[16] SONG Li-Jun, JI Ke, CHEN He-Ming, et al. The Radius Changes of Point Defect on the Impact of THz Modulator Based on Photonic Crystal [J]. Modern Scientific Instruments,(宋丽君, 季珂, 陈鹤鸣,等. 点缺陷半径变化对光子晶体THz波调制器性能影响分析. 现代科学仪器) 2012, (6): 40-42.

季珂, 陈鹤鸣. 光子晶体粗波分-模分混合复用/解复用器[J]. 红外与毫米波学报, 2018, 37(1): 50. JI Ke, CHEN He-Ming. Coarse wavelength-mode-division hybrid multiplexer/de-multiplexer of photonic crystal[J]. Journal of Infrared and Millimeter Waves, 2018, 37(1): 50.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!