红外与激光工程, 2018, 47 (11): 1122004, 网络出版: 2019-01-10  

量子簇分片传输方案

Fragment transmission scheme of quantum cluster
作者单位
河南理工大学 物理与电子信息学院, 河南 焦作 454000
摘要
在量子通信网络中, 量子路由器因自身性能的限制, 使其能够存储转发的量子簇长度是有限的。由于量子城域网和广域网数据量庞大, 会导致大量量子簇因长度限制问题无法转发而只能以量子分组的形式进行数据传输。为了解决上述问题, 提出了一种量子簇分片传输方案, 其将不能够直接被量子路由器存储转发的量子簇, 通过分片将其分解为若干个长度较短的、能够直接被路由器存储转发的分片量子簇完成数据传输。仿真结果表明: 在数据量庞大的城域网和广域网中, 需要分片的量子簇数量多, 对于提出的量子簇分片传输方案, 与已有的量子簇数据传输方案相比, 其能够以较少的纠缠资源和较短的传输时间完成量子分组的数据传输, 具有较好的实际应用价值。
Abstract
In the quantum communication network, quantum routers can store and forward quantum clusters with limited length. In the metropolitan area network(MAN) and wide area network(WAN), date volumes are very large, as a result, a large number of quantum clusters can not be stored and forwarded because of the length constraint problem and can only be transmitted in the form of quantum packets. In order to solve the above problem, a fragment transmission scheme of quantum cluster was proposed, it fragmented the quantum clusters, which were not able to be stored and forwarded by the quantum router, so that the fragmented quantum cluster could satisfy the storage and forwarding condition of routers and could be directly transmitted. The simulation results show that in the MAN and WAN, a large number of quantum clusters need to be fragmented because of the large amount of date, so compared with the existing data transmission scheme based on quantum cluster, the proposed fragment transmission scheme of quantum cluster can achieve the data transmission by consuming the short time and less quantum entanglement resources, and own the better practical value.
参考文献

[1] Bennett C H, Brassard G, Crépeau C, et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels[J]. Physical Review Letters, 1993, 70(13): 1895.

[2] Pan J W, Bouwmeester D. Experimental quantum teleportation[J]. Nature, 1997, 390(390): 575.

[3] Phoenix S J D, Barnett S M, Townsend P D, et al. Multi-user quantum cryptography on optical-networks[J]. Modern Opt, 1995, 46(6): 1155-1163.

[4] Brassard G, Bussieres F, Godbout N, et al. Multi-user quantum key distribution using wave-length division multiplexing[C]//SPIE, 2003, 5260(6): 149-153.

[5] Inagaki T, Matsuda N, Tadanaga O, et al. Entanglement distribution over 300 km of fiber[J]. Optics Express, 2013, 21(20): 23241-9.

[6] 许雄, 陶强强, 沈飞, 等. 基于偏振信息恢复的光通信[J]. 红外与激光工程, 2016, 45(9): 0922002.

    Xu Xiong, Tao Qiangqiang, Shen Fei, et al. Retrieving the polarization information for light communication[J]. Infrared and Laser Engineering, 2016, 45(9): 0922002. (in Chinese)

[7] 吴佳楠, 王世刚, 张迪, 等. 融合量子密钥真随机性的二值图像水印[J]. 光学 精密工程, 2017, 25(11): 2968-2974.

    Wu Jianan, Wang Shigang, Zhang Di, et al. Binary image watermark fusionbased on quantum key true randomness[J]. Optics and Precision Engineering, 2017, 25(11): 2968-2974. (in Chinese)

[8] 薛乐, 聂敏, 刘晓慧. 量子信令中继器模型及性能仿真[J]. 物理学报, 2013, 62(17): 170305.

    Xue Le, Nie Min, Liu Xiaohui. A model of quantum signaling repeater and parameters simulation[J]. Acta Phys Sin, 2013, 62(17): 170305. (in Chinese)

[9] 周南润, 曾贵华, 龚黎华, 等. 基于纠缠的数据链路层量子通信协议[J]. 物理学报, 2007, 56(9): 5066-5070.

    Zhou Nanrun, Zeng Guihua, Gong Lihua, et al. Quantum communication protocol for data link layer based on entanglement[J]. Acta Phys Sin, 2007, 56(9): 5066-5070. (in Chinese)

[10] 周小清, 邬云文, 赵晗. 量子隐形传态网络的互联与路由策略[J]. 物理学报, 2011, 60(4): 35-40.

    Zhou Xiaoqing, Wu Yunwen, Zhao Han. Quantum teleportation internetworking and routing strategy[J]. Acta Phys Sin, 2011, 60(4): 35-40. (in Chinese)

[11] 刘晓慧, 聂敏, 裴昌幸. 量子无线广域网构建与路由策略[J]. 物理学报, 2013, 62(20): 200304.

    Liu Xiaohui, Nie Min, Pei Changxing. Quantum wireless wide-area networking and routing strategy[J]. Acta Phys Sin, 2013, 62(20): 200304. (in Chinese)

[12] 聂敏, 王林飞, 杨光,等. 基于分组交换的量子通信网络传输协议及性能分析[J]. 物理学报, 2015, 64(21): 210303.

    Nie Min, Wang Linfei, Yang Guang, et al. Transmission protocol and its performance analysis of quantum communication network based on packet switching[J]. Acta Phys Sin, 2015, 64(21): 210303. (in Chinese)

[13] 聂敏, 刘广腾, 杨光,等. 基于最少中继节点约束的量子VoIP路由优化策略[J]. 物理学报, 2016, 65(12): 120302.

    Nie Min, Liu Guangteng, Yang Guang, et al. Voice over quantum IP routing based on least relay node constrained optimization strategy[J]. Acta Phys Sin, 2016, 65(12): 120302. (in Chinese)

[14] 王林飞, 聂敏, 杨光, 等. 一种基于分层的量子分组传输方案及性能分析[J]. 物理学报, 2016, 65(13): 130302.

    Wang Linfei, Nie Min, Yang Guang, et al. A scheme of quantum packet transmission and its performance analysis based on hierarchical[J]. Acta Phys Sin, 2016, 65(13): 130302. (in Chinese)

[15] 闫红叶. 量子通信中的密集编码方案[D]. 大连: 大连理工大学, 2010.

    Yan Hongye. The scheme of quantum dense coding in quantum communication[D]. Dalian: Dalian University of Technology, 2010. (in Chinese)

王新良, 黄青改, 张中卫. 量子簇分片传输方案[J]. 红外与激光工程, 2018, 47(11): 1122004. Wang Xinliang, Huang Qinggai, Zhang Zhongwei. Fragment transmission scheme of quantum cluster[J]. Infrared and Laser Engineering, 2018, 47(11): 1122004.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!