红外与激光工程, 2018, 47 (4): 0417005, 网络出版: 2018-09-19   

基于灰阶靶标的高分辨光学卫星传感器在轨绝对辐射定标

On-orbit absolute radiometric calibration of high resolution satellite optical sensor based on gray-scale targets
徐伟伟 1,2,*张黎明 1,2李鑫 1,2杨宝云 1,2王戟翔 1,2
作者单位
1 中国科学院安徽光学精密机械研究所 通用光学定标与表征技术重点实验室, 安徽 合肥 230031
2 中国科学院合肥物质科学研究院, 安徽 合肥230031
摘要
辐射定标是光学卫星传感器遥感信息定量化的关键技术之一。基于多灰阶靶标的星载多光谱相机在轨绝对辐射定标方法, 以地面漫射辐射/总辐射比、大气光学厚度等参数的实际测量代替气溶胶散射特性假设, 通过参照目标反射辐射与大气程辐射及地气耦合辐射的分离, 简化定标流程, 并突破大面积辐射校正场受时空条件的限制, 实现高分辨率多光谱遥感器全动态范围内的高精度、高频次、业务化定标。试验结果表明: 基于灰阶靶标的高分辨光学卫星传感器在轨绝对辐射定标不确定度优于3.5%, 与反射率基法定标结果的差异优于5%, 且适应于复杂环境条件下在轨定标的应用需求。
Abstract
Radiometric calibration in-flight is one of critical techniques for information quantification of optical satellite sensor. A calibration approach based on gray-scale targets has been presented. It substitutes the measured ratio of diffusion to global irradiance and atmospheric optical depth to the assumption of aerosol scatter. And the method could isolate the DN signal created by the targets from the response produced by background radiance sources, which simplify the calibration process. It can break the time and locale conditions limit of radiometric sites and achieve high precision, high frequency and normalizable calibration application for high spatial resolution multi-spectral sensor with full dynamic range. The results show that the calibration approach′s uncertainty is less than 3.5%. And the difference of calibration coefficient is less than 5% compared with the reflectance-based method. Simultaneously, this approach can also satisfy the application to the complex environment.
参考文献

[1] Qiao Yanli, Zheng Xiaobing, Wang Xianhua, et al. Whole-process radiometric calibration of optical remote sensors[J]. Journal of Remote Sensing, 2006, 10(5): 606-623. (in Chinese)

[2] Biggar S F. In-flight methods for satellite sensor absolute radiometric calibration[D]. Tucson: University of Arizona, 1990.

[3] Slater P N, Biggar S F, Holm R G, et al. Reflectance and radiance-based methods for the inflight absolute calibration of multispectral sensors[J]. Remote Sensing of Environment, 1987, 22(1): 11-37.

[4] Thome K J. Absolute radiometric calibration of Landsat-7 ETM+ using the reflectance-based method[J]. Remote Sensing of Environment, 2001, 78(2): 27-38.

[5] Biggar S F, Slater P N, Gellman D I. Uncertainties in-flight calibration of sensors with reference to measured ground sites in the 0.4 to 1.1μm range[J]. Remote Sensing of Environment, 1994, 48(2): 245-252.

[6] Slater P N, Biggar S F, Thome K J, et al. Vicarious radiometric calibrations of EOS sensors[J]. Journal of Atmospheric and Oceanic Technology, 1996, 13(2): 349-359.

[7] Thome K J. Validation plan for MODIS level 1 at-sensor radiance[R]. http://modis.gsfc.nasa.gov/MODIS.

[8] Han Qijin, Fu Qiaoyan, Pan Zhiqiang, et al. Absolute radiometric calibration and validation analysis of ZY-3 using artificial targets[J]. Infrared and Laser Engineering, 2013, 42(1): 167-173. (in Chinese)

[9] Zheng Xiaobing, Zhang Liming, Wu Haoyu, et al. Advanced radiometric calibration techniques for optical remote sensing[J]. Advances in Marine Science, 2004, 22(21): 16-22. (in Chinese)

[10] Fu Qiaoyan, Min Xiangjun, Li Xingchao, et al. In-flight absolute calibration of the CBERS-02 CCD sensor at the Dunhuang test site[J]. Journal of Remote Sensing, 2006, 10(4): 433-439. (in Chinese)

[11] Zhang Yuxiang, Zhang Guangshun, Huang Yibin, et al. In-flight vicarious radiometric calibration for VIS-NIR channels of FY-1C satellite sensor at Dunhuang site[J]. Acta Meteorologica Sinica, 2002, 60(6): 740-747. (in Chinese)

[12] Hu Xiuqing, Zhang Yuxiang, Qiu Kangmu. In-flight radiometric calibration for VIR channels of FY-1C satellite sensor by using irradiance-based method[J]. Journal of Remote Sensing, 2003, 7(6): 458-464. (in Chinese)

[13] Han Qijin, Fu Qiaoyan, Zhang Xuewen, et al. High-frequency radiometric calibration for wide field-of-view sensor of GF-1 satellite[J]. Optics and Precision Engineering, 2014, 22(7): 1707-1714. (in Chinese)

[14] Denis N, Andreas B, Jeff C M, et al. Absolute radiometric calibration of the RapidEye multispectral imager using the reflectance-based vicarious calibration method[J]. Appl Remote Sensing, 2011(5): 053-54.

[15] Holekamp K. Radiometric characterization of the IKONOS, QuickBird, and OrbView-3 sensors[C]//2006 Civil Commercial Imagery Evaluation Workshop, 2006: SSTI-2220-0076.

[16] Pagnutti M. Atmospheric correction of high spatial resolution commonercial satellite imagery products using MODIS atmospheric products[C]//3rd International Workshop on the Analysis of Multi-temporal Remote Sensing Images, 2005: SSTI-2220-0036.

[17] Xu Qiuyun, Zheng Xiaobing, Zhang Wei, et al. Advanced calibration method for sun radiometers[J]. Acta Optica Sinica, 2010, 30(5): 1337-1342. (in Chinese)

[18] Chen Hongyao, Zhang Liming, Shi Jiading, et al. High accuracy gonioreflectometer for solar diffuser spectral BRDF measurement[J]. Journal of Atmospheric and Environmental Optics, 2014, 9(1): 72-80. (in Chinese)

[19] Huang Honglian, Yi Weining, Du Lili, et al. Multi-spectral remote sensing image true color synthesis technique based on artificial target[J]. Infrared and Laser Engineering, 2016, 45(11): 11260021. (in Chinese)

[20] Zhang Xuewen, Fu Qiaoyan, Han Qijin, et al. The field radiometric calibration and validation of ZY-3 multispectral sensor[J]. Spectroscopy and Spectral Analysis, 2014, 34(9):2476-2480. (in Chinese)

徐伟伟, 张黎明, 李鑫, 杨宝云, 王戟翔. 基于灰阶靶标的高分辨光学卫星传感器在轨绝对辐射定标[J]. 红外与激光工程, 2018, 47(4): 0417005. Xu Weiwei, Zhang Liming, Li Xin, Yang Baoyun, Wang Jixiang. On-orbit absolute radiometric calibration of high resolution satellite optical sensor based on gray-scale targets[J]. Infrared and Laser Engineering, 2018, 47(4): 0417005.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!