红外与激光工程, 2019, 48 (11): 1104002, 网络出版: 2019-12-09   

宽谱段环境污染气体红外遥测技术研究

Remote sense for environment pollution gases in wide infrared spectral range
作者单位
昆明物理研究所, 云南 昆明 650223
摘要
根据环境污染气体监测的广谱需求, 提出了宽谱段红外光谱遥测方法, 利用长波红外傅里叶干涉光谱技术, 向长波红外大气窗口短波端外扩展了仪器响应波段, 使之在一定条件下能够探测多数常见工业气体的指纹特征。在7.0 ~14.5 μm波段内, 采用差谱法和亮温法, 可监测多种常用工业有毒有害气体, 并可给出以浓度程长积表征的概略浓度。介绍了遥测光谱仪的性能表征方法, 例举了实用型产品PARES100对11种常用工业有毒有害气体的应用实例。
Abstract
According to the wide spectrum requirement of environmental pollution gases monitoring, a wide spectrum infrared spectrum remote sense method was proposed. By using the long wave infrared Fourier interference spectrum technology, the response band of the instrument was extended to the short wave end of the long wave infrared atmospheric window, so that it can detect the fingerprint characteristics of most common industrial gases under certain conditions. In the 7.0-14.5 μm (700-1 450 cm-1), the difference spectrum method and bright temperature method can be used to monitor a variety of commonly used industrial toxic and harmful gases, and the approximate concentration characterized by the long-term product of the concentration range can be given. The performance characterization method of remote sense spectrometer was introduced, and the application examples of PARES100 to 11 kinds of industrial gases and harmful gases were given.
参考文献

[1] Beer R. Remote Sensing by Fourier Transform Spectrometry[M]. Wiley: New York, 1992.

[2] Murty M V R K. Some more aspects of the michelson interferometer with cube corners[J]. Journal of the Optical Society of America, 1960, 50: 7-10.

[3] Harig R, Matz G, Rusch P, et al. Remote detection of methane by infrared spectrometry for airborne pipeline surveillance: First results of ground-based measurements[C]//The International Society for Optical Engineering, Proceedings of SPIE, 2004, 5235: 435-446.

[4] 熊伟, 方勇华, 黄烨, 等. 基于亮温光谱法的大气污染气体探测[J]. 光电工程, 2006, 33(4): 27-30.

    Xiong Wei, Fang Yonghua, Huang Ye, et al. Remote sensing of pollution cloud by passive Fourier transform infrared spectrometry[J]. Opto-Electronic Engineering, 2006, 33(4): 27-30. (in Chinese)

[5] 崔方晓, 方勇华, 兰天鸽, 等. 基于亮温光谱和主成分分析的大气污染气体探测[J]. 光谱学与光谱分析, 2011, 31(10): 2794-2797.

    Cui Fangxiao, Fang Yonghua, Lan Tiange, et al. Remote sensing of pollutant gases using brightness temperature and principal component analysis[J]. Spectroscopy and Spectral Analysis, 2011, 31(10): 2794-2797. (in Chinese)

[6] 崔方晓, 方勇华. 基于亮温光谱的红外背景压缩方法[J]. 光学学报, 2013, 33(11): 1130001.

    Cui Fangxiao, Fang Yonghua. Infrared background compression method based on brightness temperature spectrum[J]. Acta Optica Sinica, 2013, 33(11): 1130001. (in Chinese)

[7] Andreas Beil. Remote sensing of atmospheric pollution by passive FTIR spectrometry[C]//SPIE, 1998, 3493: 32-43.

[8] Harig R, Matz G. Toxic cloud imaging by infrared spectrometry: A scanning FTIR system for identification and visualization[J]. Field Analytical Chemistry and Technology, 2001, 5(1): 75-90.

[9] Zheng Weijian, Jin Weiqi, Su Junhong. The studies of chemical vapor infrared remote alarm[C]//SPIE, 2007, 6621: 662129.

[10] 张骏, 荀毓龙. 化学蒸气光谱实时监测系统的信噪比分析[J]. 量子电子学报, 1997, 14(6): 537-541, 548.

    Zhang Jun, Xun Yulong. Analysis SNR of the spectrometry system for real-time remote detection of chemical vapors[J]. Chinese Journal of Quantum Electronics, 1997, 14(6): 537-541, 548. (in Chinese)

[11] 郑为建, 金伟其, 苏君红. 远距离被动红外遥测系统的等效噪声辐射通量密度[J]. 红外技术, 2007, 29(9): 512-514.

    Zheng Weijian, Jin Weiqi, Su Junhong. NESR of long-distance passive infrared telemetering systems[J]. Infrared Technology, 2007, 29(9): 512-514. (in Chinese)

[12] Yang Zhixiong, Zheng Weijian, Xia Fei, et al. The analysis of radiometric calibration based on long-wave infrared hyperspecteal imaging spectrometer[C]//SPIE, 2018, 10832: 10832-1.

郑为建, 余春超, 杨智雄, 张卫锋, 王红伟, 雷正刚, 袁小春, 张培仲, 严敏, 郑稚闵. 宽谱段环境污染气体红外遥测技术研究[J]. 红外与激光工程, 2019, 48(11): 1104002. Zheng Weijian, Yu Chunchao, Yang Zhixiong, Zhang Weifeng, Wang Hongwei, Lei Zhenggang, Yuan Xiaochun, Zhang Peizong, Yan Min, Zheng Zhimin. Remote sense for environment pollution gases in wide infrared spectral range[J]. Infrared and Laser Engineering, 2019, 48(11): 1104002.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!