红外与激光工程, 2019, 48 (11): 1113005, 网络出版: 2019-12-09  

精细导星仪星点定位系统误差的高精度补偿方法

High-precision systematic error compensation method for star centroiding of fine guidance sensor
陈怀宇 1,2,3,*尹达一 1,2,3
作者单位
1 中国科学院上海技术物理研究所 红外探测与成像技术重点实验室, 上海 200083
2 中国科学院大学, 北京 100049
3 中国科学院上海技术物理研究所, 上海 200083
摘要
针对精细导星仪(Fine Guidance Sensor, FGS)姿态测量精度受星点提取系统误差影响的问题, 提出了一种基于梯度提升决策树(Gradient Boosting Decision Tree, GBDT)拟合法的高精度星点定位系统误差补偿方法。为了解决拟合样本少、输入特征差别大等问题, 采用对输入范围不敏感、易于训练的决策树作为基模型, 并根据当前模型拟合残差梯度, 结合集成学习中的提升方法生成新的基模型得到系统误差与探测器填充率、采样窗口尺寸、星斑束腰半径以及星点质心坐标计算值之间的函数关系, 以此函数关系为基础对星点质心坐标估计值进行系统误差校正。实验结果表明: 与支持向量回归机(Support Vector Regression, SVR)相比, 基于GBDT的高精度星点定位算法的误差减小了60.6%, 经该算法补偿后的质心误差为0.014 5 pixel, 相比于质心法误差减小了61.5%。
Abstract
Aiming at the problem that the attitude measurement accuracy of Fine Guidance Sensor (FGS) was affected by the error of star point extraction system, a high-precision star point positioning system error compensation method based on Gradient Boosting Decision Tree(GBDT) fitting method was proposed. In order to solve the problems of less fitting samples and large differences in input characteristics, a decision tree that was insensitive to the input range and easy to train was used as the base model. Combining the boosting method in ensemble learning to generate a new base model to obtain the functional relationship between the systematic error and the detector fill rate, sampling window size, Gaussian width of star image and star point centroid coordinate calculation value, and based on this function relationship to the star point centroid. The coordinate estimate was systematically corrected. The experimental results show that compared with the support vector regression machine, the error of the high-precision star point localization algorithm based on GBDT is reduced by 60.6%. The corrected centroid error is 0.014 5 pixel, and the error is reduced by 61.5%.
参考文献

[1] Sabelhaus P A, Campbell D, Clampin M, et al. Overview of the James Webb Space Telescope(JWST) project[C]//UV/Optical/IR Space Telescopes: Innovative Technologies and Concepts II. International Society for Optics and Photonics, 2005, 5899: 58990P.

[2] Zheng S H, Evans C. Optical design of the JWST fine guider sensor[C]// Proceedings of SPIE-The International Society for Optical Engineering, 2010,77860: 77860Y.

[3] Meza L, Tung F, Anandakrishnan S, et al. Line of sight stabilization of james webb space telescope[C]//27th Annual AAS Guidance and Control Conference, 2005.

[4] Jia Hui, Yang Jiankun, Li Xiujian, et al. Systematic error analysis and compensation for high accuracy star centroid estimation of star tracker[J]. Science in China Series E: Technological Sciences, 2010, 53(11): 3145-3152. (in Chinese)

[5] Wei Xinguo, Xu Jia, Zhang Guangjun. S-curve error compensation of centroiding location for star sensors[J]. Optics and Precision Engineering, 2013, 21(4): 849-857. (in Chinese)

[6] Jiang Liang, Zhang Yu, Zhang Liguo, et al. Effect of point spread functions on star centroid error analysis[J]. Infrared and Laser Engineering, 2015, 44(11): 3437-3445. (in Chinese)

[7] Rufino G, Accardo D. Enhancement of the centroiding algorithm for star tracker measure refinement[J]. Acta Astronautica, 2003, 53(2): 135-147.

[8] Tang Shengjin, Guo Xiaosong, Zhou Zhaofa, et al. Modified systematic error compensation algorithm for star centroid sub-pixel detection[J]. Infrared and Laser Engineering, 2013,42(6): 1502-1506.(in Chinese)

[9] Yang Jun, Zhang Tao, Song Jingyan, et al. High accuracy error compensation algorithm for star image sub-pixel subdivision location[J]. Optics and Precision Engineering, 2010, 18(4):238-246.(in Chinese)

[10] Yang J, Liang B, Zhang T, et al. A novel systematic error compensation algorithm based on least squares support vector regression for star sensor image centroid estimation[J]. Sensors, 2011, 11(12): 7341-7363.

[11] Liu Nannan, Xu Shuyan, Hu Jun, et al. Hyper accuracy star location algorithm based on nonsubsampled contourlet transform and mapped least squares support vector machine[J]. Acta Optica Sinica, 2013, 33(5): 0512001. (in Chinese)

[12] Stanton R H, Alexander J W, Dennison E W, et al. Optical tracking using charge-coupled devices[J]. Optical Engineering, 1987, 26(9): 930-938.

[13] Hancock B R, Stirbl R C, Cunningham T J, et al. CMOS active pixel sensor specific performance effects on star tracker/imager position accuracy[C]//Functional Integration of Opto-electro-mechanical Devices & Systems. International Society for Optics and Photonics, 2001.

[14] Tan Di, Zhang Xin,Wu Yanxiong, et al.Analysis of effect of optical aberration on star centroid location error[J]. Infrared and Laser Engineering, 2017, 46(2): 0217004. (in Chinese)

[15] Cattermole K W. The Fourier Transform and Its Applications[M]. US: Stanford University, 2000.

[16] Rufino G, Accardo D. Enhancement of the centroiding algorithm for star tracker measure refinement[J]. Acta Astronautica, 2003, 53(2): 135-147.

[17] Weiss K, Khoshgoftaar T M, Wang D D. A survey of transfer learning[J]. Journal of Big Data, 2016, 3(1): 9.

陈怀宇, 尹达一. 精细导星仪星点定位系统误差的高精度补偿方法[J]. 红外与激光工程, 2019, 48(11): 1113005. Chen Huaiyu, Yin Dayi. High-precision systematic error compensation method for star centroiding of fine guidance sensor[J]. Infrared and Laser Engineering, 2019, 48(11): 1113005.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!