红外与激光工程, 2019, 48 (12): 1205005, 网络出版: 2020-02-11  

基于大气湍流传输激光散斑的真随机数提取研究

Study on extraction of true random numbers based on propagated laser speckle in atmospheric turbulence
作者单位
1 长春理工大学 空地激光通信技术国防重点学科实验室,吉林 长春 130022
2 长春理工大学 计算机科学技术学院,吉林 长春 130022
3 长春理工大学 电子信息工程学院,吉林 长春 130022
摘要
为生成真随机数序列, 提出了先将大气湍流传输中激光散斑图像作为随机数发生器的熵源, 再采用变帧频采样方法进行提取随机数的算法。首先, 为降低相邻激光散斑图像间高相关性对随机性的影响, 提出了变帧频采样方法。其次, 对实验数据进行处理, 根据大气湍流造成激光光斑质心的随机抖动特征, 对散斑图像划分灰度等级, 编码和后处理等操作, 从而提取随机数。最后, 利用NIST测试工具对提取的随机序列进行实验分析, 结果表明: 该序列不仅达到真随机数的标准, 而且序列的数量和随机性均高于等帧频采样方法生成的随机序列。此外, 对激光散斑视频归一化方差与最优采样区间之间的关系进行分析, 为进一步的研究提供重要依据。
Abstract
In order to generate true random sequences, a random number extraction algorithm with variable frame rate was proposed by using laser speckle video of atmospheric turbulence as entropy source of random number generator. Firstly, an image sampling method with variable frame rate was proposed to reduce the effect on randomness of high correlation between adjacent laser speckle images. Secondly, random numbers were extracted by processing the experimental data according to the random jitter characteristics of the centroid of laser spot caused by atmospheric turbulence, dividing the speckle images into different gray levels, and executing encoding and post-processing operations. Finally, experimental analysis for the extracted random sequence was carried out by the NIST test tools. Result shows that this sequence not only reachs the standard of true random numbers, its amount and randomness are also higher than those of the random sequence generated by the equal frame rate sampling method. In addition, the relationship between the normalized variance of laser speckle video and the optimal sampling interval was analyzed, which provided an important basis for further research.
参考文献

[1] 魏世海, 樊矾, 杨杰,等. 高速小型化光量子随机数发生器[J]. 中国激光, 2018, 45(5): 0512001.

    Wei Shihai, Fan Fan, Yang Jie, et al. Ultrafast compact optical quantum random number generator[J]. Chinese Journal of Lasers, 2018, 45(5): 0512001. (in Chinese)

[2] 桑鲁骁, 李璞, 王安帮,等. 基于混沌激光熵源产生实时高速随机码[J]. 光学与光电技术, 2017, 15(3): 79-83.

    Sang Luxiao, Li Pu, Wang Anbang, et al. Generating high-speed random bits in real time based on chaotic laser sources[J]. Optics & Optoelectronic Technology, 2017, 15(3): 79-83. (in Chinese)

[3] Sreekumar L, Ramesh P. Selection of an optimum entropy source design for a true random number generator[J]. Procedia Technology, 2016, 25(1): 598-605.

[4] 吕玉祥, 牛利兵, 张建忠, 等. 基于混沌激光的500 Mb/s高速真随机数发生器[J]. 中国激光, 2011, 38(5): 0502010.

    Lü Yuxiang, Niu Libing, Zhang Jianzhong, et al. 500 Mb/s fast true random bit generator based on chaotic laser[J]. Chinese Journal of Lasers, 2011, 38(5): 0502010. (in Chinese)

[5] 鄢秋荣, 赵宝升, 张华, 等. 等时间间隔内光子数奇偶随机性的光量子随机源[J]. 光子学报, 2015, 44(6): 0627003.

    Yan Qiurong, Zhao Baosheng, Zhang Hua, et al. Optical quantum random number generator based on parity of the number of photons detected in equal time intervals[J]. Acta Photonica Sinica, 2015, 44(6): 0627003. (in Chinese)

[6] Jiang H, Belkin D, Ev S S, et al. A novel true random number generator based on a stochastic diffusive memristor[J]. Nature Communications, 2017, 8(1): 882-890.

[7] 徐春风, 倪小龙, 刘智, 等. 激光大气湍流传输中的光强闪烁特性[J]. 光学 精密工程, 2016, 24(10): 183-189.

    Xu Chunfeng, Ni Xiaolong, Liu Zhi, et al. Scintillation in turbulent atmosphere laser communication[J]. Optics and Precision Engineering, 2016, 24(10): 183-189. (in Chinese)

[8] 陈牧, 柯熙政. 大气湍流对激光通信系统性能的影响研究[J]. 红外与激光工程, 2016, 45(8): 0822009.

    Chen Mu, Ke Xizheng. Effect of atmospheric turbulence on the performance of laser communication system[J]. Infrared and Laser Engineering, 2016, 45(8): 0822009. (in Chinese)

[9] 柯熙政, 张宇. 部分相干光在大气湍流中的光强闪烁效应[J]. 光学学报, 2015, 35(1): 0106001.

    Ke Xizheng, Zhang Yu. Scintillation of Partially Coherent Beam in Atmospheric Turbulence[J]. Acta Optica Sinica, 2015, 35(1): 0106001. (in Chinese)

[10] Marangon D G, Vallone G, Villoresi P. Random bits, true and unbiased, from atmospheric turbulence[J]. Scientific Reports, 2014, 4: 5490.

[11] 赵琦, 郝士琦, 张岱. 改进阈值分割的光斑中心定位方法[J], 激光与红外, 2018, 48(5): 99-103.

    Zhao Qi, Hao Shiqi, Zhang Dai. Location method of spot center based on improved threshold segmentation[J]. Laser & Infrared, 2014, 48(5): 99-103. (in Chinese)

[12] 张国和, 徐快, 段国栋, 等. 一种适于硬件实现的快速连通域标记算法[J]. 西安交通大学学报, 2018, 52(8): 95-101.

    Zhang Guohe, Xu kuai, Duan Guodong, et al. A fast labeling algorithm of connected components applicable for hardware implementation[J]. Journal of Xi′an Jiaotong University, 2018, 52(8): 95-101. (in Chinese)

[13] Elias P. The efficient construction of an unbiased random sequence[J]. Annals of Mathematical Statistics, 1972, 43(3): 865-870.

[14] Von Neumann J. Various techniques used in connection with random digits[J]. National Bureau of Standards Applied Mathematics Series, 1951, 12(1): 36-38.

[15] 申兵, 董新锋, 徐兵, 等. 随机数发生器及其在密码学中的应用[M]. 北京: 国防工业出版社, 2016: 160-172.

    Shen Bing, Dong Xinfeng, Xu Bing, et al. Random Number Generators and Their Applications in Cryptography[M]. Beijing: National Defense Industry Press, 2016: 160-172. (in Chinese)

[16] 姚海峰, 倪小龙, 陈纯毅,等. 基于脉冲激光在大气中传输的信道补偿[J]. 光学学报, 2018, 38(1): 0101003.

    Yao Haifeng, Ni Xiaolong, Chen Chunyi, et al. Channel compensation based on pulse laser propagating in atmosphere[J]. Acta Optica Sinica, 2018, 38(1): 0101003. (in Chinese)

[17] Rukhin A L, Soto J, Nechvatal J R, et al. A statistical test suite for random and pseudorandom number generators for cryptographic applications[J]. Applied Physics Letters, 2001, 800(5): 163-179.

[18] 马超, 王锐. 随机噪声信号的功率谱估计的仿真[J]. 信息技术, 2012(8): 167-169.

    Ma Chao, Wang Rui. Simulation of power spectrum estimation for random noise signal[J]. Information Technology, 2012(8): 167-169. (in Chinese)

刘中辉, 陈纯毅, 姚海峰, 潘石, 向磊, 娄岩, 倪小龙. 基于大气湍流传输激光散斑的真随机数提取研究[J]. 红外与激光工程, 2019, 48(12): 1205005. Liu Zhonghui, Chen Chunyi, Yao Haifeng, Pan Shi, Xiang Lei, Lou Yan, Ni Xiaolong. Study on extraction of true random numbers based on propagated laser speckle in atmospheric turbulence[J]. Infrared and Laser Engineering, 2019, 48(12): 1205005.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!