红外与激光工程, 2019, 48 (5): 0506007, 网络出版: 2019-06-22   

径向偏振光纯度检测及偏振态分布特性评价

Radially polarized beam purity detection and evaluation of polarization distribution characteristics
作者单位
北京工业大学 激光工程研究院, 北京 100124
摘要
光束横截面内偏振态分布均匀性是影响径向偏振光光束质量及其实际应用的关键因素。通过PBS测量法、狭缝法和S波片法三种方法对径向偏振光偏振纯度进行测量和对比, 分析了径向偏振光偏振态在横截面内分布均匀性。在PBS测量法和狭缝法测量径向偏振光过程中, 给出了径向偏振光纯度表达式, 分别测得径向偏振光纯度为93.4%和84.1%, 并引入方差公式评价径向偏振光偏振态分布均匀特性。其中PBS测量法表达径向偏振光纯度更为准确, 狭缝法可以通过比较不同区域偏振度更精确地反映径向偏振光偏振态分布特性。S波片法可以使用市场现有偏振分析仪间接测量径向偏振光纯度, 更适应于测量径向偏振光在放大过程中偏振态变化情况。
Abstract
The uniformity of polarization distribution in the cross section of the beam is a key factor affecting the quality of the radially polarized beam and its practical application. The polarization purity of the radially polarized beam was measured and compared by the PBS measurement method, the slit method and the S-wave plate method, the uniformity of the polarization state of the radially polarized beam in the cross section was analyzed. In the process of measuring the radially polarized beam by the PBS measurement method and the slit method, the expression of the radial polarization purity was given, and the purity of the radially polarized beam was determined to be 93.4% and 84.1%, respectively. And the variance formula was used to evaluate uniform distribution of the radial polarization states. Among them, the PBS measurement method expressed the purity of the radially polarized beam more accurately, and the slit method can reflect the polarization distribution characteristics of the radially polarized beam more accurately by comparing the polarization degrees of different regions. The S-wave plate method can indirectly measure the purity of the radially polarized beam using the existing polarization analyzer in the market, and is more suitable for measuring the change of the polarization state of the radially polarized beam during the amplification process.
参考文献

[1] Zhang F, Yu H, Fang J, et al. Efficient generation and tight focusing of radially polarized beam from linearly polarized beam with all-dielectric metasurface[J]. Optics Express, 2016, 24(6): 6656-6664.

[2] Chang C C, Chen X D, Pu J X. High-energy nanosecond radially polarized beam output from Nd:YAG amplifiers [J]. Optical Review, 2017, 24 (2): 188-192.

[3] Loescher A, Negel J P, Graf T, et al. Thin-disk multipass amplifier emitting radially polarized beam with 635 W of average power and 2.1 mJ of pulse energy[C]//Laser Sources and Applications III. International Society for Optics and Photonics, 2016, 9893: 98930N.

[4] Li Chen, Stoian R, Chen Guanghua. Laser-induced periodic surface structures with ultrashort laser pulse[J]. Chinese Optics, 2018, 11(1): 1-17. (in Chinese)

[5] Herrero R M, Mejias P M, Piquero G, et al. Global parameters for characterizing the radial and azimuthal polarization content of totally polarized beams[J]. Optics Communications, 2008, 281(8): 1976-1980.

[6] Wei Tongda, Zhang Yunhai, Tang Yuguo. Effect of polarization, phase and amplitude on depletion focus spot in STED [J]. Optics and Precision Engineering, 2014, 22(5):1157-1164. (in Chinese)

[7] Wang Sicong, Li Xiangping. Wavefront manipulation of tightlyfocused cylindrical vector beams and its applications[J]. Chinese Optics, 2016, 9(2): 185-202. (in Chinese)

[8] Zhan Xiangkong, Li Zhengyong, Zhang Yi, et al. Radially polarized beam restructuring based on Stokes-vector measurement and interferometry[J]. Infrared and Laser Engineering, 2017, 46(4): 0427002. (in Chinese)

[9] Li H R, Fan C J, Dang J C, et al. Focusing properties of power-exponent-phase vortex beam focused by high numerical-aperture objective [J]. High Power Laser & Particle Beams, 2018, 30(1): 1-5.

[10] Martynas B, Mindaugas G, Peter G K. Polarization sensitive elements fabricated byfemtosecond laser nanostructuring of glass[J]. Optical Materials Express, 2011, 1(1): 783-795.

[11] Tidwell S C, Ford D H, Kimura W D. Generating radially polarized beams interferometrically[J]. Appl Opt, 1990, 29(15): 2234-2239.

[12] Moshe I, Jackel S, Meir A. Production of radially or azimuthally polarized beams in solid-state lasers and the elimination of thermally induced birefringence effects[J]. Optics Letters, 2003, 28(10): 807-809.

[13] Xiu Peng, Jiang Yunshan, Wang Yifan, et al. Measuring method and evaluation of cylindrical vector polarized beams[J]. Acta Optica Sininca, 2014, 34(6): 0612002. (in Chinese)

[14] Zhou Zhehai, Zhu Lianqing. Measurement method of polarization state of vector beams based on Stokes parameters[J]. Laser & Infrared, 2016, 46(6): 742-746. (in Chinese)

[15] Hou Junfeng, Wang Dongguang, Deng Yuanyong, et al. Nonlinear least-square fitting polarization calibration of Stokes ellipsometer[J]. Optics and Precision Engineering, 2013, 21(8): 1915-1922. (in Chinese)

, , , , . 径向偏振光纯度检测及偏振态分布特性评价[J]. 红外与激光工程, 2019, 48(5): 0506007. Peng Hongpan, Yang Ce, Lu Shang, Chen Meng, Zhou Wei. Radially polarized beam purity detection and evaluation of polarization distribution characteristics[J]. Infrared and Laser Engineering, 2019, 48(5): 0506007.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!