红外与激光工程, 2019, 48 (6): 0606004, 网络出版: 2019-07-29   

高稳定度光泵浦腔内倍频488 nm半导体薄片激光器

High stability 488 nm light generated by intra-cavity frequency doubling in optically pumped semiconductor disc lasers
作者单位
长春理工大学 光电工程学院, 吉林 长春 130022
摘要
设计了一种性能稳定、结构紧凑的光泵浦腔内倍频488 nm半导体薄片激光器。为获得光束质量好、输出性能稳定的488 nm激光器, 利用808 nm LD从顶面垂直泵浦半导体增益介质芯片获得976 nm基频光, 通过在腔内置入I类相位匹配的LBO晶体进行倍频获得488 nm激光输出。半导体增益介质芯片具有13量子阱和808 nm/976 nm双反射带反射镜, 其双面键合金刚石散热片。在泵浦功率为9.2 W时, 获得111 mW 488 nm激光输出, 光谱线宽为1.3 nm, 光-光效率为1.2 %, 光束质量M■■、M■■分别为1.03和1.02, 连续工作3 h激光输出功率不稳定度为0.6%。
Abstract
A high stability and compact structure 488 nm light generated by intra-cavity frequency doubling in an optically pumped semiconductor disc laser was designed. In order to obtain a 488 nm laser with good beam quality and stable performance output, a semiconductor gain medium chip with 13 QWs and 808 nm/976 nm Double Band Mirror was pumped vertically by 808 nm LD on the top surface of the chip, and the chip with double diamond heat spreaders bonded on the both sides was introduced. 488 nm laser was generated by doubling frequency with I phase matched LBO crystals inserted in the cavity. 111 mW 488 nm laser with 1.3 nm spectral line width was obtained, the optical to optical efficiency was 1.2%, the beam quality of M■■、M■■ were 1.03 and 1.02 respectively, and the instability is less than 0.6% with continuously work for more than 3 h.
参考文献

[1] Tinguely Jean-Claude, Helle 覫ystein Ivar, Ahluwalia Balpreet Singh. Silicon nitride waveguide platform for fluorescence microscopy of living cells[J]. Optics Express, 2017, 25(22): 27678-27690.

[2] 谢绍禹, 赵毅强, 王金花, 等. 双色探测激光引信抗海浪技术[J]. 红外与激光工程, 2017, 46(4): 0406005.

    Xie Shaoyu, Zhao Yiqiang, Wang Jinhua, et al. Laser fuze anti-surf based on two-wavelength detection[J]. Infrared and Laser Engineering, 2017, 46(4): 0406005. (in Chinese)

[3] Li Chungyi, Lu Haihan, Tsai Wenshing, et al. 6 Gb/s PAM4 UWOC system based on 488 nm LD with light injection and optoelectronic feedback techniques[J]. Optics Express,2017, 25(10): 11598-11605.

[4] 段国平, 陈俊领, 韩俊鹤, 等. 488 nm连续激光晶化本征非晶硅薄膜的喇曼光谱研究[J].光子学报, 2011, 40(11): 1657-1661.

    Duan Guoping, Chen Junling, Han Junhe, et al. Raman spectroscopic study of the crystallization of intrinsic amorphous silicon thin films with a 488 nm continuous-wave laser[J]. Acta Photonica Sinica, 2011, 40(11): 1657-1661. (in Chinese)

[5] Ahmad Y Nooraldeen, Dhinaa A N, Palanisamy P K. Nonlinear optical properties of acid orange 10 dye by Z-scan technique using Ar+ laser[J]. Journal of Nonlinear Optical Physics & Materials, 2007, 16(3): 359-366.

[6] Braune M, Maiwald M, Eppich B, et al. Design and realization of a miniaturized DFB Diode laser-based SHG light wource with a 2 nm tunable emission at 488 nm [J].IEEE Transactions on Components Packaging & Manufacturing Technology, 2017, 7(5): 720-725.

[7] Xu L, Liang S, Fu Q, et al. Highly efficient frequency doubling and quadrupling of a short-pulsed thulium fiber laser[J]. Applied Physics B, 2018, 124(4): 59.

[8] 王君光, 李永亮, 田迎华, 等. 全固态腔内和频 488 nm 连续蓝光激光器[J]. 中国激光, 2010, 37(7): 1669-1672.

    Wang Junguang, Li Yongliang, Tian Yinghua, et al. All-solid-state continuous-wave all-intracavity sum-frequency mixing Blue laser at 488 nm [J]. Chinese Journal of Lasers, 2010, 37(7): 1669-1672. (in Chinese)

[9] McInerney J G, Mooradian A, Lewis A, et al. High brightness 980 nm pump lasers based on the novalux extended cavity surface-emitting laser(NECSEL) concept[C]//SPIE, 2003, 4947: 240-251.

[10] Vasily Ostroumov, Christoph Simon, Heiko Schwarze, et al. 1 W 488 nm cw air cooled optically pumped semiconductor laser[C]//SPIE, 2008, 6871: 687118.

[11] Guina M, Rantam 覿ki A, H 覿rk 覿nen A. Optically pumped VECSELs: review of technology and progress[J]. Journal of Physics D Applied Physics, 2017, 50(38): 383001.

[12] Vafapour Z, Khurgin J B. Bandgap engineering and prospects for radiation-balanced vertical-external-cavity surface-emitting semiconductor lasers[J]. Optics Express, 2018, 26(10): 12985.

[13] Kahle H, Nechay K, Penttinen J P, et al. AlGaAs-based vertical-external-cavity surface-emitting laser exceeding 4 W of direct emission power in the 740-790 nm spectral range[J]. Optics Letters, 2018, 43(7): 1578.

[14] 秦莉, 何春凤, 李军, 等. 光泵浦垂直外腔面发射激光器的结构优化设计[J]. 红外与激光工程, 2007, 36(S): 81-84.

    Qin Li, He Chunfeng, Li Jun, et al. Optimized structure designing of OPS-VECSEL[J]. Infrared and Laser Engineering, 2007, 36(S): 81-84. (in Chinese)

[15] Jun Ho Lee, Jun Youn Kim, Sang Moon Lee, et al. 9.1 W high-efficient continuous-wave end-pumped vertical-external-cavity surface-emitting semiconductor laser[J]. IEEE Photon Techn Lett, 2006, 18(20): 2117-2119.

王菲. 高稳定度光泵浦腔内倍频488 nm半导体薄片激光器[J]. 红外与激光工程, 2019, 48(6): 0606004. Wang Fei. High stability 488 nm light generated by intra-cavity frequency doubling in optically pumped semiconductor disc lasers[J]. Infrared and Laser Engineering, 2019, 48(6): 0606004.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!