红外与激光工程, 2020, 49 (S2): 20200185, 网络出版: 2021-02-05  

副载波调制脉冲激光雷达水下传输特性研究

Research on underwater transmission characteristics of subcarrier modulated pulse lidar
作者单位
1 国防科技大学 电子科学学院,湖南 长沙 410073
2 国防科技大学 气象海洋学院,湖南 长沙 410073
摘要
在激光雷达的水下应用中,由于水体对光的吸收和散射作用使得激光在水下的传输复杂多变,尤其是后向散射所造成的噪声会降低目标对比度甚至淹没目标回波,导致水下激光回波检测面临挑战。副载波调制技术可以有效地改善激光雷达系统水下探测性能,提高目标回波信号的信噪比。基于Monte Carlo方法提出了改进的副载波调制脉冲激光雷达水下传输模型,研究了海水衰减系数和通频带等因素对于系统性能的影响。仿真结果表明:相比于传统激光雷达,水体环境参数、滤波过程中的通频带选择对于系统水下探测性能影响较大;副载波调制技术可以提高目标回波信噪比和测量精度,有效改善系统性能。
Abstract
In the underwater application of lidar, the underwater transmission of laser light is complicated and variable due to the absorption and scattering of light by water, especially the noise caused by backscattering will reduce the contrast of the target, and the target echo even will be drown, resulting in big challenges of water downward laser echo detection. The subcarrier modulation technology can effectively improve the underwater detection performance of the lidar system and increase the signal-to-noise ratio of the target echo signal. Based on the Monte Carlo method, an improved underwater transmission model of a subcarrier-modulated pulsed lidar was proposed. The effects of seawater attenuation coefficient and passband on system performance were studied. Simulation results show that compared with traditional lidar, the environmental parameters of the water body and the selection of the passband during filtering have a greater impact on the underwater detection performance of the system; the subcarrier modulation technology can improve the target signal-to-noise ratio and measurement accuracy, it effectively improve the system performance.
参考文献

[1] Seibert Q Duntley. Light in the Sea [J]. Journal of the Optical Society of America, 1963, 53(2): 214-233.

[2] Liu Na, Ke Jieyao, Yang Suhui, et al. Simulation and analysis on underwater transmission characteristics of gaussian pulse lasers with carrier modulation[J]. Acta Optica Sinica, 2018, 28(4): 0401003. (in Chinese)刘娜, 柯杰耀, 杨苏辉, 等. 载波调制高斯脉冲激光水下传输特性的仿真分析[J]. 光学学报, 2018, 38(4): 0401003.

[3] Zhang Mingtao, Zhang Jianzhong, Zhang Jianguo, et al. Chaotic modulation lidar forunderwater ranging[J]. Laser & Optoelectronics Progress, 2016, 53(5): 051402.(in Chinese)张明涛, 张建忠, 张建国, 等. 面向水下测距的混沌调制激光雷达[J]. 激光与光电子学进展, 2016, 53(5): 051402.

[4] Shen Zhenmin, Shang Weidong, Wang Bingjie, et al. Lidar with high scattering ratio suppressionfor underwater detection[J]. Acta Photonica Sinca, 2020, 49(6): 0601001.(in Chinese)沈振民, 尚卫东, 王冰洁,等. 高散射抑制比激光雷达水下探测技术探析[J]. 光子学报, 2020, 49(6): 0601001.

[5] Shen Zhenmin, Zhao Tong, Wang Yuncai, et al. Underwater target detection of chaotic pulse laser radar[J]. Infrared and Laser Engineering, 2019, 48 (4): 0406004. (in Chinese)沈振民, 赵彤, 王云才, 等. 混沌脉冲激光雷达水下目标探测[J]. 红外与激光工程, 2019, 48(4): 0406004.

[6] Hua Kangjian, Liu Bo, Fang Liang, et al. Detection efficiency for underwater coaxial photon-counting lidar[J]. Applied Optics, 2020, 59(9): 2797-2809.

[7] Du Jianbo, Li Daojing, Ma Meng. Performance analysis and image processing of phase-modulated signal on airborne synthetic aperture ladar[J]. Journal of Radars, 2014, 3(1): 111-118. (in Chinese)杜剑波, 李道京, 马萌. 机载合成孔径激光雷达相位调制信号性能分析和成像处理[J]. 雷达学报, 2014, 3(1): 111-118.

[8] Mullen L, Herczfeld P R, Contarino V M. Modulated pulse LIDAR system for shallow underwater target detection[C]// IEEE Proceedings of Oceans Engineering for Today′s Technology and Tomorrow′s Preservation, 1994, 1: 835-839.

[9] Ji Hang. Research on modulated-pulse lidar for ocean exploration based on frequency filtering[D]. Wuhan: Huazhong University of Science and Technology, 2007. (in Chinese)冀航. 基于频域滤波法的调制脉冲激光雷达水下探测研究[D]. 武汉: 华中科技大学, 2007.

[10] Luchinin A, Dolin L, Kirillin M. Time delay and width variation caused by temporal dispersion of a complex modulated signal in underwater lidar[J]. Applied Optics, 2019, 58(18): 5074-5081.

[11] Zhang Hongmin, Rong Jia, Li Tao, et al. Simulation analysis of modulated lidar on optical carrier for target detection in deep-ocean[J]. Infrared and Laser Engineering, 2011, 40(12): 2409-2412. (in Chinese)张洪敏, 荣健, 李涛, 等. 深海目标探测中载波调制激光雷达技术的仿真分析[J]. 红外与激光工程, 2011, 40(12): 2409-2412.

[12] Mullen L J, Vieira A J C, Herezfelg P R, et al. Application of RADAR technology to aerial LIDAR systems for enhancement of shallow underwater target detection[J]. IEEE Transactions on Microwave Theory and Techniques, 1995, 43(9): 2370-2377.

[13] Xu Qiyang, Yang Kuntao, Wang Xinbing, et al. Blue-Green Lidar Ocean Survey[M]. Beijing: National Defense Industry Press, 2002. (in Chinese)徐啟阳, 杨坤涛, 王新兵, 等. 蓝绿激光雷达海洋探测[M]. 北京: 国防工业出版社, 2002.

[14] Toublanc D. Henyey-Greenstein and Mie phase functions in Monte Carlo radiative transfer computations[J]. Applied Optics, 1996, 35(18): 3270-3274.

[15] Perez P, Jemison W D, Mullen L, et al. Techniques to enhance the performance of hybrid lidar-radar ranging systems [C]//Oceans 2012 IEEE, 2012: 1-6.

[16] Mullen L J, Contarino V M. Hybrid LIDAR-radar: Seeing through the scatter [J]. IEEE Microwave Magazine, 2000, 1(3): 42-48.

[17] Lim H, Parka J. Comparison of time corrections using charge amounts, peak values, slew rates, and signal widths in leading-edge discrimina-tors[J]. Review of Scientific Instruments, 2003, 74(6): 3115-3119.

元志安, 王玲, 许可, 邓彬, 刘心溥, 朱家华, 马燕新. 副载波调制脉冲激光雷达水下传输特性研究[J]. 红外与激光工程, 2020, 49(S2): 20200185. Yuan Zhi′an, Wang Ling, Xu Ke, Deng Bin, Liu Xinpu, Zhu Jiahua, Ma Yanxin. Research on underwater transmission characteristics of subcarrier modulated pulse lidar[J]. Infrared and Laser Engineering, 2020, 49(S2): 20200185.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!