红外与激光工程, 2020, 49 (S2): 20200194, 网络出版: 2021-02-05   

ATLAS数据与资源三号02星影像联合区域网平差

Joint block adjustment for ATLAS data and ZY3-02 stereo imagery
作者单位
中国人民解放军战略支援部队信息工程大学 地理空间信息学院,河南 郑州450001
摘要
ICESat-2为世界首颗光子计数激光雷达测高卫星,其上携带的ATLAS可获得覆盖全球的高精度激光脚点,有助于提高卫星光学影像的无控定位精度。设计实现了ATLAS激光测高数据与卫星影像的联合平差方案。首先通过多条件筛选准则选取高精度ATLAS激光测高点,然后将筛选后的激光测高点作为带误差控制点进行联合平差计算,使卫星影像定向参数得到了优化。利用河南郑州地区的资源三号02星影像和ATLAS ATL03级数据进行的试验结果表明,文中的平差方案可将影像定位的高程精度提高60.6%,平面精度提高56.4%,验证了文中提出的方法可在无外业控制点情况下显著提高卫星影像定位精度。
Abstract
ICESat-2 is the first photon-counting lidar altimeter satellite in the world. Its ATLAS can obtain high-precision laser foot points covering the world, which helps to improve the positional accuracy of stereo satellite images without ground control points (GCPs). A joint block adjustment method for spaceborne laser altimetry data and stereo satellite images was designed and implemented. First, a multi-condition filter was proposed to select high-precision ATLAS laser altimetry points, and then the selected ATLAS laser altimetry points were used as control points with error for joint adjustment calculations,so that the satellite images orientation parameters were optimized. Experimental results on the ZY3-02 satellite images and ATLAS ATL03 data of Zhengzhou prove that the proposed method can respectively improve the vertical accuracy and the plane accuracy of stereo satellite images by 60.6% and 56.4%. The experiments discussed above demonstrate that the proposed method can effectively improve the positional accuracy of stereo satellite image without GCPs.
参考文献

[1] Markus T, Neumann T, Martino A, et al. The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation[J]. Remote Sensing of Environment, 2017, 190: 260-273.

[2] Rosiek M, Kirk R L, Archinal B A, et al. Utility of viking orbiter images and products for mars mapping[J]. Photogrammetric Engineering and Remote Sensing, 2005, 71(10): 1187-1195.

[3] Albertz J, Gehrke S, Lehmann H, et al. An overview of HRSC map products[C]//Lunar & Planetary Science Conference, 2007.

[4] Geng Xun. Research on photogrammetric processing for Mars topographic mapping[D]. Zhengzhou: PLA Information Engineering University, 2014. (in Chinese)耿迅. 火星形貌摄影测量技术研究[D]. 郑州: 中国人民解放军信息工程大学, 2014.

[5] Li Guoyuan, Tang Xinming, Wang Huabin, et al. Research on the ZY-3 block adjustment supproted by the GLAS laser altimetry data[C]//China High Resolution Earth Observation Conference, 2016. (in Chinese)李国元, 唐新明, 王华斌, 等. GLAS激光测高数据辅助的资源三号三线阵区域网平差研究[C]//第三届高分辨率对地观测学术年会, 2016.

[6] Wang Jin, Zhang Yong, Zhang Zuxun, et al. ICESat laser points assisted block adjustment for mapping satellitle-1 stereo imagery[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(3): 359-369. (in Chinese)王晋, 张勇, 张祖勋, 等. ICESat激光高程点辅助的天绘一号卫星影像立体区域网平差[J]. 测绘学报, 2018, 47(3):359-369.

[7] Cao Ning, Zhou Ping, Wang Xia, et al. Refined processing of laser altimeter data-aided satellite geometry model[J]. Journal of Remote Sensing, 2018, 22(4): 599-610. (in Chinese)曹宁, 周平, 王霞, 等. 激光测高数据辅助卫星成像几何模型精化处理[J]. 遥感学报, 2018, 22(4): 599-610.

[8] Tao C V, Hu Yong. A comprehensive study of the rational function model for photogrammetric processing[J]. Photogrammetric Engineering and Remote Sensing, 2001, 67(12): 1347-1358.

[9] Tong Xiaohua, Liu Shijie, Weng Qihao. Bias-corrected rational polynomial coefficients for high accuracy geo-positioning of Quick Bird stereo imagery[J]. Isprs Journal of Photogrammetry & Remote Sensing, 2010, 65(2): 218-226.

[10] Neumann T, Brenner A, Hancock D, et al. Ice, Cloud, and land Elevation Satellite-2 project algorithm theoretical basis document for global geolocated photons ATL03[EB/OL].https://icesat-2.gsfc,nasa,gov/sites/default/files/page_files/ICESat2_ATL03_ATBD_r002.pdf.Accessed 2019-10-15.

[11] Neumann T, Martino A, Markus T, et al. The Ice, Cloud, and land Elevation Satellite-2 mission: A global geolocated photon product derived from the advanced topographic laser altimeter system[J]. Remote Sensing of Environment, 2019, 233: 111325.

[12] Neuenschwander A L, Magruder L A. Canopy and terrain height retrievals with ICESat-2: A first look[J]. Remote Sensing, 2019, 11(14): 1721.

[13] Parrish C E, Magruder L A, Neuenschwander A L, et al. Validation of ICESat-2 ATLAS bathymetry and analysis of ATLAS′s bathymetric mapping performance[J]. Remote Sensing, 2019, 11(14): 1634.

[14] Zhou Hui, Li Song, Wang Liangxun, et al. Influence of noise on range error for satellite laser altimeter[J]. Infrared and Laser Engineering, 2015, 44(8): 2256-2261. (in Chinese)周辉, 李松, 王良训, 等.噪声对星载激光测高仪测距误差的影响[J]. 红外与激光工程, 2015, 44(8): 2256-2261.

[15] Xu Yiteng, Li Guoyuan, Qiu Chunxia, et al. Single photon laser data processing technology based on terraincorrelation and least square curve fitting[J]. Infrared and Laser Engineering, 2019, 48(12): 1205004. (in Chinese)许艺腾, 李国元, 邱春霞,等. 基于地形相关和最小二乘曲线拟合的单光子激光数据处理技术[J]. 红外与激光工程, 2019, 48(12): 1205004.

张鑫磊, 邢帅, 徐青, 张国平, 李鹏程, 焦麟, 刘宸博. ATLAS数据与资源三号02星影像联合区域网平差[J]. 红外与激光工程, 2020, 49(S2): 20200194. Zhang Xinlei, Xing Shuai, Xu Qing, Zhang Guoping, Li Pengcheng, Jiao Lin, Liu Chenbo. Joint block adjustment for ATLAS data and ZY3-02 stereo imagery[J]. Infrared and Laser Engineering, 2020, 49(S2): 20200194.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!