红外与激光工程, 2020, 49 (S2): 20200406, 网络出版: 2021-02-05   

基于相干多普勒激光雷达的风雨同时探测

Simultaneous wind and rainfall detection using coherent Doppler lidar
作者单位
1 中国科学技术大学 中国科学院近地空间环境重点实验室,安徽 合肥 230026
2 中国科学技术大学 合肥微尺度物质科学国家研究中心,安徽 合肥 230026
摘要
多普勒测风激光雷达是一种有效的具有高时空分辨率的遥感测风仪器。然而,由于雨滴反射的干扰信号,在雨天条件下进行精确的风廓线测量是一个挑战,但是这也为探测降雨提供了一种可能。在这项工作中,一台垂直指向的1.5 μm全光纤相干多普勒激光雷达被应用于风和雨的同时探测。由于相干多普勒激光雷达能够进行精确的频谱测量,因此在下雨天,它可以同时检测到气溶胶和雨滴的回波信号。具有速度差异的气溶胶和雨滴的回波信号会导致多普勒频谱出现两个峰值,从而可以根据频谱宽度来识别降雨事件。通过双高斯模型拟合多普勒频谱,可以获得两个速度,分别为风速和雨速。与微雨雷达结果的对比验证了多普勒激光雷达探测降雨的能力,同时也降低了多普勒激光雷达在雨天条件下风速的错误探测概率。
Abstract
Doppler wind lidar is an effective remote wind measurement instrument with high temporal and spatial resolution. However, due to the interference signal reflected by raindrops, it is a challenge to perform precise wind profile measurements under rainy conditions, but it also provides a possibility for detecting rainfall. In this work, a compact all-fiber coherent Doppler lidar(CDL) operating at wavelength of 1.5 μm was applied for simultaneous wind and rainfall precipitation detection. Due to the ability of precise spectrum measurement, both aerosol and rainfall signals can be detected by the CDL under rainy conditions. The echo signals from aerosols and raindrops with different speeds will cause two peaks in the Doppler spectrum, so that the spectrum width can be used to identified rainfall events. A two-component Gaussian model was applied to fit the spectrum and two velocities were obtained. The comparison with the results of the micro rain radar verifies the CDL′s ability of rain measurement, meanwhile, the false detection probability of wind speed in the rainy conditions is also reduced.
参考文献

[1] O′Conner C J, Ruithauser D K. Enhanced airport capacity through safe dynamic reductions in aircraft separation: NASA′s Aircraft Vortex Spacing System AVOSS. TM-2001-211052[R]. US: NASA, 2001.

[2] Xia H, Sun D, Yang Y, et al. Fabry-Perot interferometer based Mie Doppler lidar for low tropospheric wind observation [J]. Applied Optics, 2007, 46(29): 7120-7131.

[3] Xia H, Dou X, Sun D, et al. Mid-altitude wind measurements with mobile Rayleigh Doppler lidar incorporating system-level optical frequency control method [J]. Optics Express, 2012, 20(14): 15286-15300.

[4] Wang C, Xia H, Shangguan M, et al. 1.5 μm polarization coherent lidar incorporating time-division multiplexing [J]. Optics Express, 2017, 25(17): 20663-20674.

[5] Zhu X, Liu J, Bi D, et al. Development of all-solid coherent Doppler wind lidar [J]. Chinese Optics Letters, 2012, 10(1): 012801.

[6] Liu Z-S, Liu B-Y, Wu S-H, et al. High spatial and temporal resolution mobile incoherent Doppler lidar for sea surface wind measurements [J]. Optics letters, 2008, 33(13): 1485-1487.

[7] Xia H, Shangguan M, Wang C, et al. Micro-pulse upconversion Doppler lidar for wind and visibility detection in the atmospheric boundary layer [J]. Optics Letters, 2016, 41(22): 5218-5221.

[8] Wei T, Xia H, Wu Y, et al. Inversion probability enhancement of all-fiber CDWL by noise modeling and robust fitting [J]. Optics Express, 2020, 28(20): 29662-29675.

[9] Lottman B T, Frehlich R G, Hannon S M, et al. Evaluation of vertical winds near and inside a cloud deck using coherent doppler lidar [J]. Journal of Atmospheric and Oceanic Technology, 2001, 18(8): 1377-1386.

[10] Wei T, Xia H, Hu J, et al. Simultaneous wind and rainfall detection by power spectrum analysis using a VAD scanning coherent Doppler lidar [J]. Optics Express, 2019, 27(22): 31235-31245.

[11] Sun D, Zhong Z, Zhou J, et al. Accuracy analysis of the Fabry-Perot Etalon based Doppler wind lidar [J]. Optical Review, 2005, 12(5): 409-414.

[12] Shangguan M, Xia H, Dou X, et al. Comprehensive wind correction for a Rayleigh Doppler lidar from atmospheric temperature and pressure influences and Mie contamination [J]. Chinese Physics B, 2015, 24(9): 094212.

[13] Xia H, Dou X, Shangguan M, et al. Stratospheric temperature measurement with scanning Fabry-Perot interferometer for wind retrieval from mobile Rayleigh Doppler lidar [J]. Optics Express, 2014, 22(18): 21775-21789.

[14] Shangguan M, Xia H, Wang C, et al. All-fiber upconversion high spectral resolution wind lidar using a Fabry-Perot interferometer [J]. Optics Express, 2016, 24(17): 19322-19336.

[15] Fukao S, Wakasugi K, Sato T, et al. Direct measurement of air and precipitation particle motion by very high frequency Doppler radar [J]. Nature, 1985, 316(6030): 712-714.

[16] Manninen A J, Marke T, Tuononen M, et al. Atmospheric boundary layer classification with Doppler lidar [J]. Journal of Geophysical Research: Atmospheres, 2018, 123(15): 8172-8189.

[17] Atlas D, Srivastava R, Sekhon R. Doppler radar characteristics of precipitation at vertical incidence [J]. Reviews of Geophysics, 1973, 11(1): 1-35.

[18] Randeu W L, Kozu T, Shimomai T, et al. Raindrop axis ratios, fall velocities and size distribution over Sumatra from 2D-Video Disdrometer measurement [J]. Atmospheric Research, 2013, 119: 23-37.

[19] Thurai M, Bringi V, Petersen W, et al. Drop shapes and fall speeds in rain: Two contrasting examples[J]. Journal of Applied Meteorology Climatology, 2013, 52(11): 2567-2581.

[20] Peters G, Fischer B, Andersson T. Rain observations with a vertically looking Micro Rain Radar (MRR)[J]. Boreal Environment Research, 2002, 7(4): 353-362.

魏天问, 夏海云. 基于相干多普勒激光雷达的风雨同时探测[J]. 红外与激光工程, 2020, 49(S2): 20200406. Wei Tianwen, Xia Haiyun. Simultaneous wind and rainfall detection using coherent Doppler lidar[J]. Infrared and Laser Engineering, 2020, 49(S2): 20200406.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!