激光技术, 2019, 43 (1): 79, 网络出版: 2019-01-22   

基于微波光子学的倍频三角波生成方法

Triangular waveform generation with frequency doubling based on microwave photonics
作者单位
1 上海卫星工程研究所, 上海 200240
2 上海航天技术研究院 北京研发中心, 北京 100081
摘要
为了克服传统任意波形生成方法中电子瓶颈问题, 分析了基于微波光子学的射频任意波形的技术类型、特点和应用背景, 采用一种基于并联马赫-曾德尔调制器的倍频三角波生成方法, 引入均方根误差对输出信号和理想波形来评价, 并进行了理论分析和仿真验证。结果表明, 通过10GHz驱动信号生成了20GHz的三角波信号, 均方根误差为0.038, 即输出信号与理想信号吻合度较高;与其它方法相比, 该方法可生成倍频三角波, 信号波形与理论波形吻合度良好。该研究对未来基于微波光子学的射频任意波生成有指导意义。
Abstract
In order to overcome the problem of the electronic bottleneck in the traditional arbitrary waveform generation method, the technology type, characteristics and application background of the radio frequency arbitrary waveform based on microwave photonics were analyzed. A triangular waveform generation with frequency doubling based on parallel Mach-Zehnder modulator was adopted, and the theoretical analysis and simulation verification were carried out. The root mean square error was introduced to evaluate the output signal and the ideal waveform. The results show that, the triangle wave signal of 20GHz can be generated by 10GHz driving signal. The root mean square error is 0.038, which means the output signal is in good agreement with the ideal signal. Compared with other methods, the method can generate frequency doubling triangle wave, and the signal waveform agrees well with the theoretical waveform. It has guiding significance for the future generation of radio frequency arbitrary waves based on microwave photonics.
参考文献

[1] ZHANG Q Sh, YANG D K, WEI Y Ch, et al. Relations between common waveforms in electronics[J]. Acta Aeronautica ET Astronautica Sinica, 2001, B22(6):34-37(in Chinses).

[2] LI Q, LIANG L, GUO R H, et al. Experimental study about microwave photonic frequency multiplication system based on polarization modulator[J]. Laser Technology, 2014, 38(5): 660-664(in Chinses).

[3] ZOU G J, ZHANG B F, TENG Y Ch, et al. Study on generation and distribution of microwave signals based on optoelectronic oscillator for satellite applications[J]. Laser Technology, 2017, 41(4): 582-585(in Chinese). PU T. Principle and application of microwave photonics[M]. Beijing: Publishing House of Electronics Industry, 2015: 79-83(in Ch-inese).

[4] WANG H, LATKIN A I, BOSCOLO S, et al. Generation of triangular-shaped optical pulses in normally dispersive fibre[J].Journal of Optics, 2010, 12(3):220-221.

[5] XIAO S, McKINNEY J D, WEINER A M. Photonic microwave arbitrary waveform generation using a virtually imaged phased-array (VIPA) direct space-to-time pulse shaper[J]. IEEE Photonics Techno-logy Letters, 2004, 16(8):1936-1938.

[6] CHOU J, HAN Y, JALALI B. Adaptive RF-photonic arbitrary waveform generator[J]. IEEE International Topical Meeting on Microwave Photonics, 2003,15(4):93-96.

[7] WANG C, YAO J. Photonic generation of chirped microwave pulses using superimposed chirped fiber Bragg gratings[J]. IEEE Photonics Technology Letters, 2008, 20(11):882-884.

[8] CHI H, YAO J. Chirped RF pulse generation based on optical spectral shaping and wavelength-to-time mapping using a nonlinearly chirped fiber Bragg grating[J]. Journal of Lightwave Technology, 2008, 26(10):1282-1287.

[9] LI J, NING T, PEI L, et al. Photonic-assisted periodic triangular-shaped pulses generation with tunable repetition rate[J]. IEEE Photonics Technology Letters, 2013, 25(10):952-954.

[10] MA C, JIANG Y, BAI G, et al. Photonic generation of microwave triangular waveform based on polarization-dependent modulation efficiency of a single-drive Mach-Zehnder modulator[J]. Optics Communications, 2016, 363:207-210.

[11] XIANG P, GUO H, CHEN D, et al. A novel approach to photonic generation of periodic triangular radio frequency waveforms[J]. Optica Applicata, 2015,45(3):381-391.

[12] SHI Y L, ZHANG Y, SUN L J. Influence of lasers on phase noise of optoelectronic oscillators[J]. Laser Technology, 2015, 39(6):761-764(in Chinses).

[13] MALEKI L. Sources: The optoelectronic oscillator[J]. Nature Photonics, 2011, 5(12): 728-730.

[14] LI W, YAO J. An optically tunable optoelectronic oscillator[J]. Journal of Lightwave Technology, 2010, 28(18):2640-2645.

[15] YAO X S, MALEKI L. Optoelectronic oscillator for photonic systems[J]. IEEE Journal of Quantum Electronics, 1996, 32(7):1141-1149.

[16] GAO Y, WEN A, ZHENG H, et al. Photonic microwave waveform generation based on phase modulation and tunable dispersion[J]. Optics Express, 2016, 24(12):12524-12533.

[17] ZHANG F, GAO B, ZHOU P, et al. Triangular pulse generation by polarization multiplexed optoelectronic oscillator[J]. IEEE Photonics Technology Letters, 2016, 28(15):1645-1648.

[18] LI W, KONG F, YAO J. Arbitrary microwave waveform generation based on a tunable optoelectronic oscillator[J]. Journal of Lightwave Technology, 2013, 31(23):3780-3786.

[19] HUANG L, CHEN D, WANG P, et al. Generation of triangular pulses based on an optoelectronic oscillator[J]. IEEE Photonics Technology Letters, 2015, 27(23):2500-2503.

[20] WU T, JIANG Y, MA C, et al. Simultaneous triangular waveform signal and microwave signal generation based on dual-loop optoelectronic oscillator[J]. IEEE Photonics Journal, 2017, 8(6):1-10.

王天亮, 袁牧野, 刘波, 徐志康. 基于微波光子学的倍频三角波生成方法[J]. 激光技术, 2019, 43(1): 79. WANG Tianliang, YUAN Muye, LIU Bo, XU Zhikang. Triangular waveform generation with frequency doubling based on microwave photonics[J]. Laser Technology, 2019, 43(1): 79.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!