激光技术, 2019, 43 (5): 646, 网络出版: 2019-09-09  

780nm倍频激光器的研究

Research of 780nm frequency double laser
作者单位
太原理工大学 机械工程学院 车辆工程系, 太原 030024
摘要
为了获得结构简单、成本相对低廉的高功率780nm激光, 采用了单块倍频晶体的腔外倍频方法。分布式反馈半导体激光器产生的连续激光注入光纤放大器后, 通过周期极化铌酸锂晶体进行准相位匹配, 取得了铷原子的饱和吸收光谱。结果表明, 该激光器产生了1.2W的倍频光, 具有较高的输出功率。这一结果对铷原子钟、原子干涉仪等冷原子物理实验的小型化是有帮助的。
Abstract
In order to obtain high power 780nm laser with simple structure and relatively low cost, the method of out-of-cavity frequency doubling with single frequency doubling crystal was adopted. After continuous wavelength laser generated by distributed feedback semiconductor lasers was injected into the optical fiber amplifier, quasi-phase matching was performed through periodically polarized lithium niobate crystals. The saturated absorption spectra of rubidium were obtained. The results show that, 1.2W frequency doubling light is produced and the laser has high output power. This result is helpful for the miniaturization of cold atomic physics experiments such as rubidium atomic clock and atomic interferometer.
参考文献

[1] VANIER J, MANDACHE C. The passive optically pumped Rb frequency standard: The laser approach[J]. Applied Physics, 2007, B87(4): 565-593.

[2] WIEMAN C E, HOLLBERG L. Using diode lasers for atomic physics[J]. Review of Scientific Instruments, 1991,62(1): 21-42.

[3] NUMATA K, CHEN J R, WU S T, et al. Frequency stabilization of distributed-feedback laser diodes at 1572nm for lidar measurements of atmospheric carbon dioxide[J]. Applied Optics,2011,50(7):1047-1056.

[4] NAKAZAWA M. Recent progress on ultrafast/ultrashort/frequency- stabilized erbium-doped fiber lasers and their applications[J]. Frontiers of Optoelectronics in China, 2010,3(1):38-44.

[5] GUO Sh L, WANG J. Efficient generation of a continuous-wave, tunable 780nm laser via an optimized cavity-enhanced frequency doubling of 1.56μm at low pump powers[J]. Optical and Quantum Electronics, 2017, 49(35):1-16.

[6] CHIOW S, KOVACHY T, JASON M H, et al. Generation of 43W of quasi-continuous 780nm laser light via high-efficiency, single-pass frequency doubling in periodically poled lithium niobate crystals[J]. Optics Letters, 2012, 37(18):3861-3863.

[7] ONERA D. Compact and robust laser system for rubidium laser cooling based on the frequency doubling of a fiber bench at 1560nm[J]. Applied Physics, 2007, B89(23):177-180.

[8] KE D, ZHAI S Y, WANG X L, et al. Design of a reflective cavity for laser enhancement of the fourth harmonic generation[J]. Laser Technology, 2016, 40(2): 155-158(in Chinese).

[9] BOYD G D, KLEINMAN D A. Parametric interaction of focused gaussian light beams[J]. Applied Physics,1968,39(8):3597-3639.

[10] FENG J X, LI Y M, LIU Q, et al. High-efficiency generation of a continuous-wave single-frequency 780nm laser by external-cavity frequency doubling[J]. Applied Optics,2007,46(17):3593-3596.

[11] SANE S S, BENNETTS S, DEBS J E, et al. 11W narrow linewidth laser source at 780nm for laser cooling and manipulation of rubidium[J]. Optics Express,2012,20(8):8915-8919.

[12] THOMPSON R, TU M, AVELINE D, et al. High power single frequency 780nm laser source generated from frequency doubling of a seeded fiber amplifier in a cascade of PPLN crystals[J]. Optics Express, 2003,11(14): 1709-1713.

[13] SAEED G S, SUDDAPALLI C K, ALIREZA K, et al. Thermal effects in high-power continuous-wave single-pass second harmonic generation[J]. Quantum Electronics, 2014,20(4):563-572.

[14] HASHEMI S S, SABOURI S G, KHORSANDI A. The effect of thermal de-phasing on the beam quality of a high-power single-pass second harmonic generation[J]. Journal of Optics, 2018,20(4): 045502.

[15] GUO Sh L, HAN Y Sh, WANG J, et al. Investigation of quasi-phase-matching frequency doubling of 1560nm laser by use of PPLN and PPKTP crystals[J]. Acta Optica Sinica, 2012, 32(3): 0319001(in Chinese).

[16] LOU Q H. High-power fiber laser and its applications[M]. Hefei: University of Science and Technology of China Press, 2009: 130-131(in Chinese).

[17] FEJER M M, MAGEL G A, JUNDT D H, et al. Quasi-phase-matched second harmonic genera-tion:Tuning and tolerances[J]. Quantum Electronics,1992,28(11): 2631-2654.

[18] MIZUUCHI K, MORIKAWA A, SUGTTA T, et al. High-power continuous wave green generation by single-pass frequency doubling of a Nd∶GdVO4 laser in a periodically poled MgO∶LiNbO3 operating at room temperature[J]. Japanese Journal of Applied Physics, 2003,42(2): L1296-L1298.

[19] ZHANG Y T, QU T Zh, QIAN J, et al. Thermal effect analysis of 1560nm laser frequency doubling in a PPLN crystal[J]. Chinese Journal of Lasers, 2015,42(7):0708002(in Chinese).

李贝贝, 张翠平, 王晓佳. 780nm倍频激光器的研究[J]. 激光技术, 2019, 43(5): 646. LI Beibei, ZHANG Cuiping, WANG Xiaojia. Research of 780nm frequency double laser[J]. Laser Technology, 2019, 43(5): 646.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!