无机材料学报, 2020, 35 (10): 1123, 网络出版: 2021-03-15  

基于镉的MOF/染料复合材料的制备及荧光性能研究

Preparation and Luminescence Properties of Cd-based MOF/Dye Composites
作者单位
1 东华大学 生态纺织教育部重点实验室, 上海201620
2 东华大学 化学化工与生物工程学院, 上海 201620
3 上海市质量监督检验技术研究院, 上海 200030
摘要
采用常温原位一步法, 以Cd为金属离子, 间苯二甲酸和苯并咪唑为配体制备Cd基发光金属有机骨架(MOF)材料, 然后分别与钙黄绿素(CA)、罗丹明B(RhB)、结晶紫(CV)组装得到一系列荧光可调的MOF/CA、MOF/CA+RhB、MOF/CA+CV和MOF/CA+RhB+CV四种复合材料。探讨了染料初始添加量、比例对MOF/染料复合材料荧光性能的影响。结果表明, 随CA添加量的增加, 四种复合材料中CA特征荧光强度先增后减, 且呈现红移。添加量不变的RhB或CV荧光峰位置虽保持不变, 但荧光强度随CA量的增加而增强, 表明MOF和染料间存在能量转移。以Cd-MOF为平台, 通过调控三种染料摩尔配比制备得到具有白荧光的MOF/CA3+RhB+CV复合材料, 其色度坐标为(0.335, 0.321), 与理论白光坐标(0.333, 0.333)接近。
Abstract
A series of tunable-luminescence MOF/CA, MOF/CA+RhB, MOF/CA+CV and MOF/CA+RhB+CV composite light-emitting materials were prepared by combining calcein (CA), rhodamine B (RhB), crystal violet (CV) with MOF using Cd as metal ion, isophthalic acid and benzimidazole as ligand by the one-step method at room temperature. The influence of the initial addition amount and ratio of dyes on the fluorescence properties of MOF/Dye composites was discussed. With the increase of CA amount, the characteristic fluorescence emission intensity of CA increased firstly and then decreased accompanied with red-shift. Although the position of the characteristic fluorescence emission wavelength of RhB or CV remained unchanged due to the unchanged addition amount, the characteristic fluorescence emission intensity of CA changed like CA. MOF/CA3+RhB+CV composite with white light emission was further prepared by adjusting the molar ratio of dyes using MOF as a platform. Its chromaticity coordinate (0.335, 0.321) was close to the ideal white light coordinate (0.333, 0.333).

发光材料的研究备受瞩目, 尤其是白光发光二极管(WLED)在照明、显示及可见光通信(VLC)上的应用广泛[1], 至今已开发出多种白光发光材料, 包括量子点[2]、聚合物[3]、钙钛矿[4]和金属有机材料等。在这些材料中, 发光金属有机骨架(MOF)材料作为一种新型发光材料, 因其结构的多样性、金属节点和有机配体的多项选择性、以及孔洞的可调节性而备受关注[5], 成为化学传感器和发光器件中具有前景的多功能材料[6]

目前已经报道的基于MOF的白光发光材料, 通常掺杂稀土元素(RE)实现白光发射[7,8]。但近来因稀土材料的高成本[9]、稀土离子类型的限制, 越来越多的研究者将有机荧光染料封装在MOF孔内[10,11], 制备具有丰富发光特性的MOF/Dye复合材料[12]。同时, 虽然有机染料的热稳定性较低, 但当染料被MOF包覆后热分解温度比纯染料高, 表明MOF包覆在一定程度上减少了染料的热分解损失[13]。由于MOF孔洞的可装载性、有机荧光染料种类的多样性, 以及MOF通道对染料分子的隔离可有效防止因聚集引起的猝灭(ACQ)[14,15]等特点, 使白光发射MOF/Dye复合材料的制备具有更多的选择性。同时, 有机荧光染料分子较高的量子产率、简单的化学调谐能力和快速的辐射发射率也极大地推动了MOF/Dye复合材料的发展。

本研究采用常温原位一步合成法, 以Cd为金属离子, 间苯二甲酸和苯并咪唑为配体, 将其与多组分荧光染料进行组装。通过调控三种染料的摩尔比, 制备具有白光发射的MOF/CA+RhB+CV复合材料。研究结果将为组装白光发射材料提供参考。

1 实验方法

1.1 材料

硝酸镉(Cd(NO3)2 4H2O)、间苯二甲酸、苯并咪唑和钙黄绿素(简称CA)均购于国药集团化学试剂有限公司; 醋酸钠购于上海凌风化学试剂有限公司; 罗丹明B(RhB)和结晶紫(CV)购于Adamas。实验用水均为蒸馏水。

1.2 Cd基双配体MOF的合成

在参照文献[16]的基础上, 以水作为溶剂, 在常温常压下合成Cd基双配体MOF材料: 将四水硝酸镉水溶液(0.32 gCd(NO3)2×4H2O, 10 mLH2O)加入到间苯二甲酸、苯并咪唑、醋酸钠的水溶液中 (0.16 g m-BDC、0.06 g BIM、0.574 g CH3COONa、10 mLH2O), 在常温条件下搅拌反应30 min后, 静置1 h, 然后离心, 用乙醇、蒸馏水依次清洗, 最后冷冻干燥, 得到白色固体粉末。

1.3 MOF/Dye复合材料的合成

将硝酸镉和染料混合水溶液, 加入到含有间苯二甲酸及苯并咪唑配体的水溶液中, 搅拌反应30 min, 室温静置1 h, 离心, 蒸馏水洗涤, 冷冻干燥得到粉末。

各样品编号及染料用量见表1, 其中, CA添加量以CA与制备MOF时Cd2+添加量的摩尔比表示。载有染料的MOF样品为染料CA时, 表示为MOF/CA; 多组分染料, 如CA+RhB, 表示为MOF/CA+RhB。次

级编号中, 数字下标表示染料的添加摩尔比, 如MOF/CA5+RhB+CV表示制备过程中, CA、RhB和CV的添加摩尔比为5 : 1 : 1。MOF/CA-3中CA的添加量与MOF/CA10+RhB、MOF/CA10+CV或MOF/ CA10+RhB+CV中CA的添加量相同。

表 1.

样品编号及染料添加量

Table 1. Sample abbreviation and dye addition amount

SampleCA addition (mol/1×10-3mol Cd2+)Addition ratio
CA/RhBCA/CV
MOF/CAMOF/CA-11.25×10-7--
MOF/CA-22.50×10-7--
MOF/CA-3(MOF/CA10)5.00×10-7--
MOF/CA-41.00×10-6--
MOF/CA-52.00×10-6--
MOF/CA+RhBMOF/CA5+RhB2.5×10-75 : 1-
MOF/CA10+RhB5.0×10-710 : 1-
MOF/CA20+RhB1.0×10-620 : 1-
MOF/CA+CVMOF/CA5+CV2.5×10-7-5 : 1
MOF/CA10+CV5.0×10-7-10 : 1
MOF/CA20+CV1.0×10-6-20 : 1
MOF/CA+RhB+CVMOF/CA1+RhB+CV5.0×10-81 : 11 : 1
MOF/CA3+RhB+CV1.5×10-73 : 13 : 1
MOF/CA5+RhB+CV1.5×10-75 : 15 : 1
MOF/CA10+RhB+CV5.0×10-710 : 110 : 1
MOF/CA20+RhB+CV1.0×10-620 : 120 : 1

查看所有表

1.4 表征

使用D/MAX-2500VB+/PC型X射线衍射仪(Rigaku, 日本)对粉末的晶体结构进行测定, 测试条件为Cu靶、40 kV和200 mA, 扫描速度为20 (°)/min, 波长为0.15406 nm。使用TM-1000型扫描电子显微镜(HITACHI, 日本)对粉末表面形态进行表征。使用FS-5型荧光光谱仪(英国)测试样品的荧光激发和发射光谱。在WFH-204B型手持紫外灯照射(365 nm)下, 使用A7m3型索尼相机拍摄粉末光学照片。由荧光发射光谱, 在CIE1931标准色度系统中依据公式$X=\int_{380}^{780}{\bar{x}(\lambda )S(\lambda )\text{d}\lambda }$、$Y=\int_{380}^{780}{\bar{y}(\lambda )S(\lambda )\text{d}\lambda }$、$Z=\int_{380}^{780}{\bar{z}(\lambda )}S(\lambda )\text{d}\lambda $和$x=\frac{X}{X+Y+Z}$$、$$y=\frac{Y}{X+Y+Z}$$计算样品的CIE色度坐标。

2 结果与讨论

2.1 MOF和MOF/Dye的结构及形貌分析

MOF及MOF/Dye复合材料的XRD图谱(图1)显示, 无论MOF是否与染料进行组装, MOF的XRD衍射峰的位置和形状均未观察到明显变化。MOF及MOF/Dye均在2θ=7.2°、10.8°、14.5°、19.3°、22.2°和27.3°处有明显的衍射峰。此外, 在MOF/Dye复合材料的XRD图谱中, 均未观察到明显的染料特征衍射峰, 说明MOF对染料的包覆不影响其晶型结构, 且对染料进行了成功包覆[16,17]

图 1. MOF及复合材料的XRD图谱

Fig. 1. XRD patterns of MOF and composite materials

下载图片 查看所有图片

图2(a)的SEM照片显示MOF材料为不规则的立体块状聚集形成的规则球形。MOF/Dye形貌与MOF形貌基本一致(图2(b~e)), 说明染料的引入对MOF形貌并不产生影响。这也说明染料是被吸附进入MOF骨架中, 而非吸附在MOF的表面。其中MOF、MOF/CA-3、MOF/CA10+RhB、MOF/CA10+CV和MOF/CA10+RhB+CV微球的最大直径分别为~20.7、~19.1、~17.7、~20.7和~18.5 μm。

图 2. MOF及MOF/Dye的SEM照片

Fig. 2. SEM images of MOF and MOF/Dye

下载图片 查看所有图片

2.2 MOF/CA复合材料的荧光发光特性分析

为了了解CA与MOF间的相互作用, 通过添加不同量的CA制备一系列MOF/CA复合材料(表1), 并测定纯MOF和MOF/CA的荧光发射光谱。328 nm光激发下, 纯MOF显示蓝光荧光(364 nm, 图3(a))。365 nm紫外光照射时, 也可观察到微弱蓝光(图3(b))。紫外光停止照射后, 可观察到MOF配体间苯二甲酸具有的超长绿色磷光。

图 3. MOF的激发光谱和荧光发射光谱(a)以及光学照片(b)

Fig. 3. Excitation spectrum and fluorescence emission spectrum (a), and optical photo of MOF (b)

下载图片 查看所有图片

图4(a)为MOF和MOF/CA的荧光发射图谱。随CA添加量的增加, 330 nm紫外激发下MOF/CA在364 nm处的荧光强度逐渐变弱, CA特征荧光发射强度先增强, 在MOF/CA-3中达到最大, 之后逐渐变弱。这是因为CA浓度过大时, 染料在MOF内部出现聚集, 由单分子状态变为二或多聚体, 导致荧光减弱[16]。同时, CA荧光峰从531 nm红移至558 nm, 这可能是由于MOF与CA间能量传递或染料聚集所致[12, 18]

随CA添加量增加, MOF/CA的CIE色度坐标从浅绿色(0.311, 0.497)过渡到黄色(0.417, 0.561)区域(图4(b))。在365 nm紫外光下, 样品荧光颜色从绿光变化到黄光(图4(c))。

图 4. MOF和MOF/CA的荧光发射图谱(a); CIE色度图(b), 日光和紫外光下光学照片(c)

Fig. 4. Fluorescence emission spectra of MOF and MOF/CA (a); CIE chromaticity diagram (b)( where 1: MOF/CA-1; 2: MOF/CA-2; 3: MOF/CA-3; 4: MOF/CA-4; 5: MOF/CA-5) and optical photos under daylight and UV light at 365 nm (c)

下载图片 查看所有图片

2.3 MOF/CA+RhB的荧光发光特性分析

保持RhB量不变, 改变CA的添加量, 制备MOF/CA+RhB(表1), 测定荧光发射光谱。从图5(a)可以看出: 在330 nm激发下, 三种MOF/CA+RhB均明显呈现MOF、CA、RhB的特征荧光发射。随CA添加量的增加, 荧光强度逐渐增强, 但不呈线性增强。当CA添加量由5 : 1增至10 : 1时, 荧光强度增强明显, 当CA添加量增至20 : 1时, 荧光强度增强不明显。同时, CA荧光峰从525 nm红移到535 nm。与CA荧光增强不同, 由于能量转移所致[18], MOF在364 nm处的荧光强度随CA添加量增加逐渐减弱。三种样品中RhB添加量不变, RhB荧光峰(588 nm)位置保持不变; 在CA添加量为5 : 1和10 : 1时, RhB荧光强度不变, 增至20 : 1时, 强度减弱。

图 5. MOF/CA+RhB的荧光发射光谱(a), CIE色度图(b), 日光和365 nm紫外光下的光学照片(c)

Fig. 5. Fluorescence emission spectra of MOF/CA+RhB (a), CIE chromaticity diagram (b) (where 1: MOF/CA5+RhB; 2: MOF/CA10+RhB; 3: MOF/CA20+RhB) and optical photos under sunlight and UV light at 365 nm (c)

下载图片 查看所有图片

随CA添加量增加, 样品CIE色度坐标由红橙色(0.499, 0.436)向橙黄色(0.490, 0.479)过渡(图5(b)), 说明调控CA添加量可控制荧光发射中的黄色。日光下样品呈现深浅不一的橙色, 365 nm紫外光下显示为橙黄色(图5(c))。

2.4 MOF/CA+CV的荧光发光特性分析

保持CV量不变, 增加CA的添加量, 制备MOF/CA+CV(表1), 测定荧光发射光谱。从图6(a)可以看出: 在330 nm激发下, 三种MOF/CA+CV的荧光光谱均出现MOF、CA和CV的特征荧光发射。随CA添加量的增加, MOF特征荧光峰强度逐渐减弱, CA特征荧光强度逐渐增强, 荧光发射峰从520 nm红移到530 nm, CV特征荧光增强不太明显。

图 6. MOF/CA+CV的荧光发射光谱(a), CIE色度图(b), 日光和365 nm紫外光下光学照片(c)

Fig. 6. Fluorescence emission spectra of MOF/CA+CV (a), CIE chromaticity diagram (b)(where 4: MOF/CA5+CV; 5: MOF/CA10+CV; 6: MOF/CA20+CV)and optical photos under sunlight and UV light at 365 nm (c)

下载图片 查看所有图片

随CA添加量的增加, MOF/CA+CV的CIE色度坐标依次为浅青色、青绿色和绿色(图6(b))。365 nm紫外光下, MOF/CA5+CV粉末颜色近似于白光(图6(c)), 与CIE图中青色不同(图6(b), 编号4)。这是因为光谱色度测定是在330 nm下被激发, 而光学照片中(图6(c))粉末的发光在365 nm下激发。

2.5 MOF/CA+RhB+CV的荧光发光特性分析

保持RhB和CV添加量不变, 改变CA添加量, 制备得到MOF/CA+RhB+CV(表1)。从图7(a)可以看出: CA荧光发射随CA添加量的增加逐渐红移, 荧光波长位置由509 nm红移至529 nm。添加量不变的RhB和CV的荧光发射峰位置几乎不变。此外, 在MOF/CA+RhB+CV中, 随CA添加量的增加, MOF本征荧光发射峰强度逐渐变弱。CA荧光强度逐渐增强, 在MOF/CA10+RhB+CV中达到最大后减弱。这是由于随CA添加量的增加, CA在MOF骨架内部开始出现聚集, 由单分子状态变为多分子聚集, 从而导致荧光减弱。

图 7. MOF/CA+RhB+CV的荧光发射光谱(a), CIE色度图(b), 日光和365 nm紫外光下光学照片(c)

Fig. 7. Fluorescence emission spectra of MOF/CA+RhB+CV

下载图片 查看所有图片

在RhB添加量不变, 当CA添加量增加时, RhB荧光峰强度先增后减, 在MOF/CA10+RhB+CV中达到最大。这可能是因为MOF或CA单独将能量传递给RhB, 或是MOF与CA共同作用将能量传递给RhB所致[13,19]。同时, 添加量不变的CV也呈现出与RhB相似的变化, 荧光强度也是MOF/CA10+RhB+ CV的最大。

对MOF/CA+RhB+CV中特征荧光峰强度变化进行了计算, 见表2。特征荧光峰强度变化R计算方式, 以RMOF为例: $${{R}_{\text{MOF}}}=\frac{{{I}_{\text{MOF in MOF/C}{{\text{A}}_{x}}\text{+}}}_{\text{RhB+CV}}}{{{I}_{\text{MOF in MOF/C}{{\text{A}}_{\text{1}}}\text{+}}}_{\text{RhB+CV}}}$$从表2中可知, 随CA添加量增加, 特征荧光峰强度变化RMOF逐渐降低, RCARRhBRCV呈现先增后减的趋势。由于RhB或CV的添加量不变, RhB或CV的荧光强度变化与CA的添加量密切相关。

随CA添加量的增加, MOF/CA+RhB+CV的CIE色度坐标从黄色向白色、再到蓝紫色方向变化(图7(b))。其中, MOF/CA3+RhB+CV坐标值为(0.335, 0.321), 与理论白光坐标(0.333,0.333)接近。在日光和365 nm紫外光下, 样品颜色也逐渐变化(图7(c))。但因激发波长不同, 365 nm紫外光照射下, MOF/CA3+RhB+CV并不呈现白色(图7(c))。

表 2.

MOF/CA+RhB+CV中特征荧光峰强度的变化(R)

Table 2. Changes of intensity of characteristic fluorescence peaks(R)in MOF/CA+RhB+CV

SampleChanges of intensity of characteristic fluorescence peak R
RMOFRCARRhBRCV
MOF/CA1+RhB+CV1.001.001.001.00
MOF/CA3+RhB+CV0.711.790.920.95
MOF/CA5+RhB+CV0.702.701.281.17
MOF/CA10+RhB+CV0.524.311.691.38
MOF/CA20+RhB+CV0.283.151.301.12

查看所有表

3 结论

通过调控染料的初始添加量及摩尔比, 本研究采用常温原位一步法制备了一系列荧光可调的四种复合材料MOF/CA、MOF/CA+RhB、MOF/CA+CV和MOF/CA+RhB+CV。研究结果表明, 染料聚集诱导荧光减弱或猝灭, MOF与染料间存在能量转移。随CA添加量的增加, 四种复合材料中MOF的特征荧光强度逐渐减弱, CA特征荧光强度先增后减, 且荧光发射波长呈现单一红移。RhB或CV添加量不变, 虽然RhB或CV的荧光发射峰位置保持不变, 但它们的荧光强度随CA添加量的增加而增强。以MOF为平台, 利用染料间、MOF与染料间的能量转移和色光三原色的发光原理制备得到MOF/CA+RhB+ CV。其中, MOF/CA3+RhB+CV的色度坐标为(0.335, 0.321), 与理论白光坐标接近。

参考文献

[1] MONDAL T, MONDAL S, BOSE S, et al. Pure white light emission from a rare earth-free intrinsic metal-organic framework and its application in a WLED[J]. Journal of Materials Chemistry C, 2018, 6(3): 614-621.

[2] DING Y, ZHENG J, WANG J, et al. Direct blending of multicolor carbon quantum dots into fluorescent films for white light emitting diodes with an adjustable correlated color temperature[J]. Journal of Materials Chemistry C, 2019, 7(6): 1502-1509.

[3] YING L, HO C L, WU H, et al. White polymer light-emitting devices for solid-state lighting: materials, devices, and recent progress[J]. Advanced Materials, 2014, 26(16): 2459-2473.

[4] WANG A, GUO Y, ZHOU Z, et al. Aqueous acid-based synthesis of lead-free tin halide perovskites with near-unity photoluminescence quantum efficiency[J]. Chemical Science, 2019, 10(17): 4573-4579.

[5] ZHOU Z, LI Q, HAN Y, et al. A highly connected (5,5,18)-c trinodal MOF with a 3D diamondoid inorganic connectivity: tunable luminescence and white-light emission[J]. RSC Advances, 2015, 5(118): 97831-97835.

[6] WANG A, HOU Y L, KANG F, et al. Rare earth-free composites of carbon dots/metal-organic frameworks as white light emitting phosphors[J]. Journal of Materials Chemistry C, 2019, 7(8): 2207-2211.

[7] LI H, LIU H B, TAO X M, et al. Novel single component tri-rare-earth emitting MOF for warm white light LEDs[J]. Dalton Transaction, 2018, 47(25): 8427-8433.

[8] YOUSAF A, ARIF A M, XU N, et al. A triazine-functionalized nanoporous metal-organic framework for the selective adsorption and chromatographic separation of transition metal ions and cationic dyes and white-light emission by Ln 3+ ion encapsulation[J]. Journal of Materials Chemistry C, 2019, 7(29): 8861-8867.

[9] YIN J, ZHANG G, PENG C, et al. An ultrastable metal-organic material emits efficient and broadband bluish white-light emission for luminescent thermometers[J]. Chemical Communications, 2019, 55(12): 1702-1705.

[10] CHEN Y, YU B, CUI Y, et al. Core-shell structured cyclodextrin metal-organic frameworks with hierarchical dye encapsulation for tunable light emission[J]. Chemistry of Materials, 2019, 31(4): 1289-1295.

[11] SAMANTA D, VERMA P, ROY S, et al. Nanovesicular MOF with omniphilic porosity: bimodal functionality for white-light emission and photocatalysis by dye encapsulation[J]. ACS Applied Materials & Interfaces, 2018, 10(27): 23140-23146.

[12] CUI Y, SONG T, YU J, et al. Dye encapsulated metal-organic framework for warm-white led with high color-rendering index[J]. Advanced Functional Materials, 2015, 25(30): 4796-4802.

[13] CAI H, LU W, YANG C, et al. Tandem Förster resonance energy transfer induced luminescent ratiometric thermometry in dye-encapsulated biological metal-organic frameworks[J]. Advanced Optical Materials, 2019, 7(2): 1801149-1801156.

[14] WANG J, ZHANG Y, YU Y, et al. Spectrally flat white light emission based on red-yellow-green-blue dye-loaded metal-organic frameworks[J]. Optical Materials, 2019, 89: 209-213.

[15] WANG Z, WANG Z, LIN B, et al. Warm-white-light-emitting diode based on a dye-loaded metal-organic framework for fast white-light communication[J]. ACS Applied Materials & Interfaces, 2017, 9(40): 35253-35259.

[16] LIU J, ZHUANG Y, WANG L, et al. Achieving multicolor long- lived luminescence in dye-encapsulated metal-organic frameworks and its application to anticounterfeiting stamps[J]. ACS Applied Materials & Interfaces, 2018, 10(2): 1802-1809.

[17] WEN Y, SHENG T, ZHU X, et al. Introduction of red-green-blue fluorescent dyes into a metal-organic framework for tunable white light emission[J]. Advanced Materials, 2017, 29(37): 1700778.

[18] WANG Z, ZHU C Y, MO J T, et al. White-light emission from dual- way photon energy conversion in a dye-encapsulated metal-organic framework[J]. Angewandte Chemie International Edition, 2019, 131(29): 9854-9859.

[19] TAO H, LI S, XU M, et al. Fluorospectrophotometric determination of trace amount of cobalt in TCM[J]. PTCA(B. Chem. Anal.), 2013, 49(04): 413-416.

刘明珠, 牛传文, 张欢欢, 邢彦军. 基于镉的MOF/染料复合材料的制备及荧光性能研究[J]. 无机材料学报, 2020, 35(10): 1123. Mingzhu LIU, Chuanwen NIU, Huanhuan ZHANG, Yanjun XING. Preparation and Luminescence Properties of Cd-based MOF/Dye Composites[J]. Journal of Inorganic Materials, 2020, 35(10): 1123.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!