中国光学, 2020, 13 (1): 140, 网络出版: 2020-03-09  

双向大气信道激光传输的信道互易性研究

Channel reciprocity of bidirectional atmospheric laser transmission channels
作者单位
1 长春理工大学 空间光电技术国家地方联合工程研究中心, 长春 130022
2 长春理工大学 光电工程学院, 长春 130022
摘要
在大气信道激光传输中, 大气湍流对系统性能会产生较大影响, 主要体现为降低传输速率和增加误码率。在具有信道互易性的双向激光传输链路中, 两终端光斑信号强度的变化相关, 可以在终端提取信道状态信息, 以对信道影响进行补偿, 从而提高传输速率。本文首先在弱湍流条件下, 根据Rytov近似理论推导了平面波双向传输链路接收到的光斑信号的相关系数与传输路径的关系, 并给出解析式。结果表明, 两终端接收的光斑信号的光通量具有相关性, 且相关系数与传输路径有关。进一步搭建了双向收发共轴激光传输系统, 并进行了外场试验, 试验结果不仅验证了双向大气信道激光传输链路具有互易性, 且两接收端光斑信号光强的实时变化趋势相同。本文结论对实现大气信道高速率、低误码率激光传输具有重要意义。
Abstract
In atmospheric channel laser transmissions, atmospheric turbulence has a large influence on system performance, reducing its transmission rate and increasing its bit error rate. In a bidirectional free-space laser transmission link with channel reciprocity, as the change in optical signal intensity at the two terminals is correlated, the Channel State Information (CSI) can be obtained at the transmitter and used to compensate the channel influence, thus improves the transmission rate. In this paper, under weakly fluctuating conditions, according to Rytov approximation, the relationship between the correlation coefficient of the spot signal received by plane wave bidirectional transmission link and the transmission path is deduced, and its analytical expression is derived. The results show that the intensity of the optical signal at the receiving end of the bidirectional free-space laser transmission link is related to the transmission end and that the correlation coefficient is related to the location of the transmission path. A bidirectional coaxial laser transmission system is further established and an external field test is performed. The real-time change trend of the intensity of the speckle signal at both receivers is the same. Therefore, the atmospheric channel of the bidirectional free-space laser transmission link is reciprocal. The conclusion of this paper is of great significance for realizing high-rate and low bit error rate transmission in atmospheric channels.
参考文献

[1] 任伟. 空间激光通信研究现状及发展趋势[J]. 中国新通信, 2017, 19(24): 5-7.

    REN W. Research status and development trend of space laser communication[J]. China New Telecommunications, 2017, 19(24): 5-7. (in Chinese)

[2] 任建迎, 孙华燕, 张来线, 等. 空间激光通信发展现状及组网新方法[J]. 激光与红外, 2019, 49(2): 143-150.

    REN J Y, SUN H Y, ZHANG L X, et al.. Development status of space laser communication and new method of networking[J]. Laser & Infrared, 2019, 49(2): 143-150. (in Chinese)

[3] MECHERLE G S, HORSTEIN M. Comparison of radio frequency and optical architectures for deep-space communications via a relay satellite[J]. Proceedings of SPIE, 1994, 2123: 36-53.

[4] MORTAZY E, MORAVVEJ-FARSHI M K. A new model for optical communication systems[J]. Optical Fiber Technology, 2005, 11(1): 69-80.

[5] PURYEAR A L, SHAPIRO J H, PARENTI R R. Reciprocity-enhanced optical communication through atmospheric turbulence-part II: communication architectures and performance[J]. Journal of Optical Communications and Networking, 2013, 5(8): 888-900.

[6] 陈绍娟, 向劲松, 李晓双. 星地激光通信中多光束发射的最优发送[J]. 现代电信科技, 2013, 43(10): 43-48.

    CHEN SH J, XIANG J S, LI X SH. Transmitter optimization in multi-beam transmitter for satellite-ground laser communication[J]. Modern Science & Technology of Telecommunications, 2013, 43(10): 43-48. (in Chinese)

[7] PARENTI R R, ROTH J M, GRECO J A, et al.. Channel reciprocity in single-mode free-space optical links[C]. Proceedings of 2012 IEEE Photonics Society Summer Topical Meeting Series, IEEE, 2012: 113-114.

[8] PARENTI R R, ROTH J M, SHAPIRO J H, et al.. Experimental observations of channel reciprocity in single-mode free-space optical links[J]. Optics Express, 2012, 20(19): 21635-21644.

[9] KOLKA Z, BIOLKOVA V, WILFERT O, et al.. Simulation model of correlated FSO channels[C]. Proceedings of 2015 Conference on Microwave Techniques, IEEE, 2015: 1-4.

[10] ANDRP S, PINTO A N. Chromatic dispersion fluctuations in optical fibers due to temperature and its effects in high-speed optical communication systems[J]. Optics Communications, 2005, 246(4-6): 303-311.

[11] SHAPIRO J H. Reciprocity of the turbulent atmosphere[J]. Journal of the Optical Society of America, 1971, 61(4): 492-495.

[12] GIGGENBACH D, COWLEY W, GRANT K, et al.. Experimental verification of the limits of optical channel intensity reciprocity[J]. Applied Optics, 2012, 51(16): 3145-3452.

[13] PARTHASARATHY S, GIGGENBACH D, BARRIOS R, et al.. Simulative verification of channel reciprocity in free-space optical inter-HAP links[C]. Proceedings of 2017 IEEE International Conference on Space Optical Systems and Applications, IEEE, 2017: 154-159.

[14] 王孛, 施鹏, 赵生妹. 大气湍流下自由光通信信道模型的数值仿真[J]. 南京邮电大学学报(自然科学版), 2012, 32(4): 32-37.

    WANG B, SHI P, ZHAO SH M. Numerical simulations of FSO channel through atmosphere turbulence[J]. Journal of Nanjing University of Posts and Telecommunications (Natural Science), 2012, 32(4): 32-37. (in Chinese)

[15] MINET J, VORONTSOV M A, POLNAU E, et al.. Enhanced correlation of received power-signal fluctuations in bidirectional optical links[J]. Journal of Optics, 2013, 15(2): 022401.

[16] CHEN CH Y, YANG H M. Correlation between light-flux fluctuations of two counter-propagating waves in weak atmospheric turbulence[J]. Optics Express, 2017, 25(11): 12779-12795.

[17] PERLOT N, GIGGENBACH D. Scintillation correlation between forward and return spherical waves[J]. Applied Optics, 2012, 51(15): 2888-2893.

[18] TATARSKII V I. Wave Propagation in A Turbulent Medium[M]. New York: McGraw-Hill, 1961.

[19] RYTOV S M, KRAVTSOV Y A, TATARSKII V I. Principles of Statistical Radiophysics: Wave Propagation Through Random Media[M]. Berlin: Springer-Verlag, 1989.

[20] 饶瑞中. 现代大气光学[M]. 北京: 科学出版社, 2012.

    RAO R ZH. Modern Atmospheric Optics[M]. Beijing: Science Press, 2012. (in Chinese)

[21] KHALIGHI M A, SCHWARTZ N, BOURENNANE S, et al.. Fading reduction by aperture averaging and spatial diversity in optical wireless systems[J]. IEEE/OSA Journal of Optical Communications and Networking, 2009, 1(6): 580-593.

[22] 张逸新, 迟泽英. 光波在大气中的传输与成像[M]. 北京: 国防工业出版社, 2001.

    ZHANG Y X, CHI Z Y. Laser Wave Propagation and Imaging Throng Atmosphere[M]. Beijing: National Defense Industry Press, 2001. (in Chinese)

[23] ISHIMARU A. Wave Propagation and Scattering in Random Media[M]. New York: IEEE Press, 1977.

刘艺, 赵义武, 倪小龙, 娄岩, 姜会林, 刘智. 双向大气信道激光传输的信道互易性研究[J]. 中国光学, 2020, 13(1): 140. LIU Yi, ZHAO Yi-wu, NI Xiao-long, Lou Yan, JIANG Hui-lin, LIU Zhi. Channel reciprocity of bidirectional atmospheric laser transmission channels[J]. Chinese Optics, 2020, 13(1): 140.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!