激光与光电子学进展, 2009, 46 (1): 19, 网络出版: 2009-02-10   

低能量激光照射引起的细胞增殖以及凋亡效应的一些分子机制研究

Progress on Molecular Mechanism of Biological Effects Induced by Low-Power Laser Irradiation
作者单位
华南师范大学 激光生命科学研究所暨激光生命科学教育部重点实验室, 广东, 广州 510631
摘要
低能量激光照射(LPLI)可以调节多种生物过程。大量的实验结果表明它能够促进细胞增殖与分化。最近的研究表明高通量的低能量激光照射(HF-LPLI)可以诱导细胞凋亡。低能量激光照射可以影响多种细胞内生理指标的水平。其中活性氧(ROS)的产生被认为是低能量激光照射引起的细胞生物效应中关键的因素。在分子水平上,低能量激光引起的细胞生物效应主要由一些信号蛋白来执行。简要介绍了低能量激光照射引起生物效应的研究进展,重点介绍了低能量激光照射的光化学本质,以及引起的细胞增殖和凋亡效应的分子机制。
Abstract
Low-power laser irradiation (LPLI) has been found to modulate various biological processes. A lot of experiment results demonstrate LPLI can induce cell proliferation and apoptosis. Recent researches show that high fluence low-power laser irradiation (HF-LPLI) can induce cell apoptosis. LPLI can induce changes in some physiological indexes, one of which is reactive oxygen species (ROS), generated from endogenous photosensitive reactions. ROS is a key factor in LPLI-induced cellular response. Regarding molecular mechanism, LPLI can activate certain signal proteins. The study progress on biological effects induced by low-power laser irradiation, the photochemical essence, and the molecular mechanism of cell proliferation or apoptosis induced by LPLI is introduced.
参考文献

[1] . . Photobiology of low-power laser effect[J]. Health Physiol., 1989, 56: 691-704.

[2] 乔渝珍, 孙近仁, 贾 锋 等. 低能量激光鼻腔照射疗法的临床应用研究[J]. 应用激光, 2004, 24(1): 61~62

[3] 刘煜昊, 葛海燕, 李淑萍 等. 低能量激光溶脂技术基础研究[J]. 应用激光, 2008, 28(1): 80~83

[4] 夏新蜀, 余和平, 白定群 等. 低能量激光血管内照射对脑梗死患者血液流变学影响[J]. 激光杂志, 2006, 27(4): 84~84

[5] 范晓红, 李正佳, 朱长虹. 低能量激光应用于医学治疗的机理研究进展[J]. 激光杂志, 2002, 23(5): 78~79.

[6] . 低能量激光照射对小鼠脾脏NK细胞活性影响的试验研究[J]. 激光生物学报, 2002, 11(5): 321-325.

[7] 黄保续, 王洪斌,刘焕奇 等. 低能量激光照射对S180腹水瘤小鼠外周血免疫细胞数量影响的研究[J]. 激光杂志, 2003, 24(1): 66~69

[8] 朱 菁, 施虹敏, 张慧国. 关于低能量激光血管内照射治疗同时输液有关问题的讨论[J]. 应用激光, 2003, 23(2): 127~127

[9] . D., Gavriella S, Andrey I et al.. Low-energy laser irradiation affects satellite cell proliferation and differentiation in vitro[J]. Biochim. Biophys. Acta, 1999, 1448: 372-380.

[10] . , Kasem N., Haanaes H.R. et al.. Enhancement of bone formation in rat calvarial bone defects using low-level laser therapy[J]. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 2004, 97: 693-700.

[11] . S., Da Silva Dde F., De Araujo C. E. et al.. Effects of low-intensity polarized visible laser radiation on skin burns: A light microscopy study[J]. J. Clin. Laser Med. Surg., 2004, 22(1): 59-66.

[12] . M., Perez de la Lastral J., Gomez-Villamandos R. et al.. Biological effect of helium-neon (He-Ne) laser irradiation on mouse myeloma (Sp2-Ag14) cell line in vitro[J]. Lasers Med. Sci., 1998, 13: 214-218.

[13] . . Targeting of the vascular system of solid tumours by photodynamic therapy (PDT)[J]. Photochem. Photobiol. Sci., 2004, 3: 765-771.

[14] . , Chen T. S., Xing D. et al.. Measuring dynamics of caspase-3 activity in living cells using FRET technique during apoptosis induced by high fluence low-power laser irradiation[J]. Lasers Surg. Med., 2005, 36: 2-7.

[15] . N., Xing D., Wang F. et al.. Mechanistic study of apoptosis induced by high fluence low-power laser irradiation using fluorescence imaging techniques[J]. J. Biomed. Opt., 2007, 12: 064015.

[16] . , Yova D., Handris P. et al.. Human fibroblast alteration induced by low power laser irradiation at the single cell level using confocal microscopy[J]. Photochem. Photobiol. Sci., 2002, 1: 547-552.

[17] . , Casamassima E., Molinari S. et al.. Increase of proton electro-chemical potential and ATP synthesis in rat liver mitochondria irradiated in vitro by helium-neon laser[J]. Fed. Eur. Biochem. Soc. Lett., 1984, 175(1): 95-99.

[18] . , Schneid N., Reuveni N. et al.. 780 nm low power diode laser irradiation stimulates proliferation of keratinocyte cultures: involvement of reactive oxygen species[J]. Lasers Surg. Med., 1998, 22: 212-218.

[19] . J., Chen T. S., Xing D. et al.. Single cell analysis of PKC activation during proliferation and apoptosis induced by laser irradiation[J]. J. Cell Physiol., 2005, 206: 41-48.

[20] . T., Xing D., Gao X. J.. Low-power laser irradiation activates Src tyrosine kinase through reactive oxygen species-mediated signaling pathway[J]. J. Cell Physiol., 2008, 217: 518-528.

[21] . , Oron U., Irintchev A. et al.. Skeletal muscle cell activation by low-energy laser irradiation: a role for the MAPK/ERK pathway[J]. J. Cell. Physiol., 2001, 187: 73-80.

[22] . , Nikolaychik V., Keelan M. H. et al.. Low-power helium: neon laser irradiation enhances production of vascular endothelial growth factor and promotes growth of endothelial cells in vitro[J]. Lasers Surg. Med., 2001, 28: 355-364.

[23] . , Chaya B., Elana A.. Effect of helium/neon laser irradiation on nerve growth factor synthesis and secretion in skeletal muscle cultures[J]. Photochem. Photobiol. B, 2002, 66: 195-200.

[24] . , Pyatibrat L.. Irradiation with He-Ne laser increases ATP level in cells cultivated in vitro[J]. Biochem. Photobiol. B, 1995, 27: 219-223.

[25] . , Barash I., Oron U. et al.. Low-energy laser irradiation enhances de novo protein synthesis via its effects on translation-regulatory proteins in skeletal muscle myoblasts[J]. Biochim. Biophys. Acta, 2003, 1593: 131-139.

[26] . , Liu T. C., Li Y. et al.. Signal transduction pathways involved in low intensity He-Ne laser-induced respiratory burst in bovine neutrophils: A potential mechanism of low intensity laser biostimulation[J]. Lasers Surg. Med., 2001, 29: 174-178.

[27] . C., Garfield S. H., Blumberg P. M.. Analysis by fluorescence resonance energy transfer of the interaction between ligands and protein kinase C in the intact cell[J]. J. Biol. Chem., 2005, 280: 8164-8171.

[28] . O., Shields T. D., Gilmore W. S. et al.. Low intensity laser irradiation inhibits tritiated thymidine incorporation in the hemopoietic cell lines HL-60 and U937[J]. Lasers Surg. Med., 1994, 14: 34-39.

[29] . J., Jelkmann W.. Helium-neon laser irradiation inhibits the growth of kidney epithelial cells in culture[J]. Lasers Surg. Med., 1990, 10: 40-44.

[30] . , Kroemer G.. Apoptosis: mitochondria-the death signal integrators[J]. Science, 2000, 289: 1150-1151.

[31] . B., Periasamy A.. Fluorescence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations[J]. J. Cell Biol., 2003, 160(5): 629-633.

[32] . D., Zhang J., Tsien R. Y. et al.. A genetically encoded fluorescent reporter reveals oscillatory phosphorylation by protein kinase C[J]. J. Cell Biol., 2003, 161(5): 899-909.

[33] . X., Botvinick E. L., Zhao Y. H. et al.. Visualizing the mechanical activation of Src[J]. Nature, 2005, 434(21): 1040-1045.

[34] . , Takeharu N., Atsushi M. et al.. Spatio-temporal activation of caspase revealed by indicator that is insensitive to environmental effects[J]. J. Cell Biol., 2003, 160(2): 235-243.

[35] . Ferrans et al.. Requirement for generation of H2O2 for platelet-derived growth factor signal transduction[J]. Science, 1995, 270(5234): 296-299.

[36] . . Production of hydrogen peroxide by transforming growth factor-b1 and its involvement in induction of egr-1 in mouse osteoblastic cells[J]. J. Cell. Biol., 1994, 126(4): 1079-1088.

[37] . . Primary and secondary mechanisms of action of visible to near-IR radiation on cells[J]. Biochem. Photobiol. B, 1999, 49: 1-17.

[38] . J., Jou S. B., Chen H. M. et al.. Critical role of mitochondrial reactive oxygen species formation in visible laser irradiation-induced apoptosis in rat brain astrocytes (RBA-1)[J]. J. Biomed. Sci., 2002, 9: 507-516.

[39] . S., Li J. X., Ding M. et al.. UV induces phosphorylation of protein kinase B (Akt) at Ser-473 and Thr-308 in mouse epidermal Cl 41 cells through hydrogen peroxide[J]. J. Biol. Chem., 2001, 276(43): 40234-40240.

[40] . , Lavi R., Shainberg A. et al.. Flavins are source of visible-light-induced free radical formation in cells[J]. Lasers Surg. Med., 2005, 37: 314-319.

[41] . , Tsujimoto Y., Matsushima K.. Stimulatory effects of hydroxyl radical generation by Ga-Al-As laser irradiation on mineralization ability of human dental pulp cells[J]. Biol. Pharm. Bull, 2007, 30(1): 27-31.

[42] . , Ota S., Shiroshita N.. The role of protein kinase C isoforms in cell proliferation and apoptosis[J]. Int. J. Hematol., 2000, 72: 12-19.

[43] . , Kishimoto A., Inoue M. et al.. Studies on a cyclic nucleotide independent protein kinase and its proenzyme in mammalian tissues. I. Purification and characterization of an active enzyme from bovine cerebellum[J]. J. Biol. Chem., 1977, 252(21): 7603-7609.

[44] . . The molecular heterogeneity of protein kinase C and its implications for cellular regulation[J]. Nature, 1988, 334(25): 661-665.

[45] . , Parker P. J.. Protein kinase C binding partners[J]. Bioessays, 2000, 22: 245-254.

[46] . C.. Protein kinase C: structural and spatial regulation by phosphorylation, cofactors, and macromolecular interactions[J]. Chem. Rev., 2001, 101: 2353-2364.

[47] . , Mori Y., Murasawa S. et al.. Interleukin-1 beta upregulates cardiac expression of vascular endothelial growth factor and its receptor KDR/flk-1 via activation of protein tyrosine kinases[J]. J. Mol. Cell Cardiol., 1999, 31: 607-617.

[48] . , Vacher M., Harbon S. et al.. A tyrosine kinase signaling pathway, regulated by calcium entry and dissociated from tyrosine phosphorylation of phospholipase Cg-1, is involved in inositol phosphate production by activated G protein-coupled receptors in myometrium[J]. J. Pharmacol. Exp. Ther., 1999, 289(2): 1022-1030.

[49] . G., Bae Y. S.. Regulation of phosphoinositide-specific phospholipase C isozymes[J]. J. Biol. Chem., 1997, 272(24): 15045-15048.

[50] . G., Choi K. D.. Regulation of inositol phospholipid-specific phospholipase C isozymes[J]. J. Biol. Chem., 1992, 267(18): 12393-12396.

[51] . , Shainberg A., Friedmann H. et al.. Low energy visible light induces reactive oxygen species generation and stimulates an increase of intracellular calcium concentration in cardiac cells[J]. J. Biol. Chem., 2003, 278(42): 40917-40922.

[52] . , Henderson G., Zwacka R .M.. Reactive oxygen species in oncogenic transformation[J]. Biochem. Soc. Trans., 2003, 31: 1441-1444.

[53] . , Ouedraogo G. D., Kochevar I. E.. Downregulation of epidermal growth factor receptor signaling by singlet oxygen through activation of caspase-3 and protein phosphatases[J]. Oncogene, 2003, 22: 4413-4424.

[54] . L., Chia M. C., Rizzo S. D. et al.. Redirecting tyrosine kinase signaling to an apoptotic caspase pathway through chimeric adaptor proteins[J]. Proc. Natl. Acad. Sci., 2003, 100(20): 11267-11272.

[55] . T., Cooper J. A.. Regulation, substrates and functions of Src[J]. Biochim. Biophys. Acta, 1996, 1287: 121-149.

[56] . , Harrison S. C., Eck M. J.. Three-demensional structure of the tyrosine kinase c-Src[J]. Nature, 1997, 385: 595-602.

[57] . , Buricchi F., Raugei G. et al.. Intracellular reactive oxygen species activate Src tyrosine kinase during cell adhesion and anchorage-dependent cell growth[J]. Mol. Cell Biol., 2005, 25(15): 6391-6403.

[58] . S., Li J. X., Ding M. et al.. UV induces phosphorylation of protein kinase B (Akt) at Ser-473 and Thr-308 in mouse epidermal Cl 41 cells through hydrogen peroxide[J]. J. Biol. Chem., 2001, 276(43): 40234-40240.

[59] . . Oxidant signals and oxidative stress[J]. Curr. Opin. Cell Biol., 2003, 15: 247-254.

[60] . A., Redondo P. C., Salido G. M. et al.. Hydrogen peroxide generation induces pp60src activation in human platelets[J]. J. Biol. Chem., 2004, 279(3): 1665-1675.

[61] . , Knebel A., Tenev T. et al.. Inactivation of protein-tyrosine phosphatases as mechanism of UV-induced signal transduction[J]. J. Biol. Chem., 1999, 274(37): 26378-26386.

[62] . , Cirri P.. Redox regulation of protein tyrosine phosphatases during receptor tyrosine kinase signal transduction[J]. Trends. Biochem. Sci., 2003, 28(9): 509-514.

[63] . K., Kumar D., Siddiqui Z. et al.. The strength of receptor signaling is centrally controlled through a cooperative loop between Ca2+ and an oxidant signal[J]. Cell, 2005, 121: 281-293.

[64] . A., Pu M., Senga T. et al.. Phosphorylation of c-Src on tyrosine 527 by another protein tyrosine kinase[J]. Science, 1991, 254: 568-571.

[65] . , Schnellmann R. G.. H2O2-induced transactivation of EGF receptor requires Src and mediates ERK1/2, but not Akt, activation in renal cells[J]. Science, 2004, 286: 858-865.

[66] . Q., Yu V. C., Pu Y. M. et al.. Measuring dynamics of caspase-8 activation in a single living HeLa cell during TNF alpha-induced apoptosis[J]. Biochem. Biophys. Res. Comm., 2003, 304: 217-222.

[67] . , Greco M., Passarella S.. Specific He-Ne laser sensitivity of the purified cytochrome c oxidase[J]. Int. J. Radiat. Biol., 2000, 76(6): 863-870.

[68] . , Lubart R., Laulicht I. et al.. A possible explanation of laser-induced stimulation and damage of cell cultures[J]. Photochem. Photobiol. B., 1991, 11: 87-95.

[69] . , Pyatibrat L., Kolyakov S. et al.. Absorption measurements of a cell monolayer relevant to phototherapy: Reduction of cytochrome c oxidase under near IR radiation[J]. Photochem. Photobiol. B, 2005, 81: 98-106.

[70] . , Pyatibrat L., Kalendo G.. Photobiological modulation of cell attachment via cytochrome c oxidase[J]. Photochem. Photobiol. Sci., 2004, 3: 211-216.

[71] . , Pyatibrat L., Afanasyeva N.. A novel mitochondria1 signaling pathway activated by visible-to-near infrared radiation[J]. Photochem. Photobiol., 2004, 80: 366-372.

[72] . , Song O.. A novel genetic system to detect protein-protein interactions[J]. Nature, 1989, 340(20): 245-246.

[73] . , Nagai T., Miyawaki A. et al.. Spatio-temporal activation of caspase revealed by indicator that is insensitive to environmental effects[J]. J. Cell Biol., 2003, 160(2): 235-243.

[74] . X., Xing D., Lou S. M. et al.. Detection of caspase-3 activation in single cells by fluorescence resonance energy transfer during photodynamic therapy induced apoptosis[J]. Cancer Lett., 2006, 235: 239-247.

[75] . , Hahn K.. Shedding light on cell signaling: interpretation of FRET biosensors[J]. Sci. STKE, 2003, 165: 1-5.

[76] . 利用荧光共振能量转移技术监测高通量低能量激光诱导细胞凋亡过程中caspase-3活性的动态变化[J]. 激光生物学报, 2007, 16(4): 400-404.

[77] . . Apoptosis by death factor[J]. Cell, 1997, 88: 355-365.

[78] . , Dixit V. M.. Death receptors: Signaling and modulation[J]. Science, 1998, 281: 1305-1308.

邢达, 吴胜男. 低能量激光照射引起的细胞增殖以及凋亡效应的一些分子机制研究[J]. 激光与光电子学进展, 2009, 46(1): 19. Xing Da, Wu Shengnan. Progress on Molecular Mechanism of Biological Effects Induced by Low-Power Laser Irradiation[J]. Laser & Optoelectronics Progress, 2009, 46(1): 19.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!