激光与光电子学进展, 2011, 48 (5): 051401, 网络出版: 2011-05-09   

正交偏振双纵模激光器腔调谐物理效应 下载: 513次

Physical Characteristics of Orthogonally Polarized Dual Frequency Laser by Cavity Tuning
作者单位
清华大学精密仪器与机械学系精密测试技术及仪器国家重点实验室,北京 100084
摘要
研究了激光偏振和模竞争以及因二者结合而产生的系列激光物理现象,并将其归纳成为28个“正交偏振双纵模激光器腔调谐物理效应”。并以He-Ne激光器(双折射He-Ne、双折射塞曼He-Ne),NdYAG微片激光器和面发射半导体激光器(VCSEL)为观察对象,研究追求系统性和完整性,揭示正交偏振双纵模激光器物理效应全貌,使研究结果成为激光原理的一个分支,以期裨益于激光学术进步和应用的发展。
Abstract
The investigation results of laser polarization, mode competition and phenomena by their combination are summarized. These findings are obtained with cavity tuning of orthogonally polarized dual frequency lasers including He-Ne lasers (birefringence He-Ne laser, birefringence-Zeeman He-Ne laser), microchip NdYAG lasers and vertical cavity surface-emitting lasers (VCSEL). 28 most important physical phenomena, instead of all, are presented, which describe characteristics comprehensively in this kind laser and will benefit the laser science and applications.
参考文献

[1] 张书练. 正交偏振激光器原理[M]. 北京: 清华大学出版社,2005

    Zhang Shulian. Principles of Orthogonal Polarized laser[M]. Beijing: Tsinghua University Press, 2005

[2] R. A. J. Keijser. Polarization properties of internal mirror He-Ne lasers in a strong transverse magnetic field[J]. Opt. Commun., 1977, 23(2): 194~198

[3] 周炳琨,高以智,陈家骅 等. 激光原理[M]. 北京: 国防工业出版社, 2000

    Zhou Bingkun, Gao Yizhi, Chen Jiahua et al.. Principles of Lasers[M]. Beijing: National Defence Industry Press, 2000

[4] 姜亚南. 环形激光陀螺[M]. 北京: 清华大学出版社, 1985

    Jiang Yanan. Ring Laser Gyro[M]. Beijing: Tsinghua University Press, 1985

[5] W. Holzapfel, W. Seffgast. Precise force measurement over 6 decades applying the resonator-internal photoelastic effect[J]. Appl. Phys. B, 1989, 49(2): 69~72

[6] M. Brunel, F. Bretenaker, A. Le Floch et al.. Tunable optical microwave source using spatially resolved laser eigenstates[J]. Opt. Lett., 1997, 22(6): 384~386

[7] R. J. Oram, I. D. Latimer, S. P. Spoor et al.. Longitudinal moder separation tuning in 633 nm helium-neon lasers using induced cavity birefringence[J]. J. Phys. D: Appl. Phys., 1993, 26: 1169~1172

[8] Zhang Shulian, Guo Hui, Li Kelan et al.. Laser longitudinal mode splitting phenomenon and its applications in laser physics and active metrology sensors[J]. Optics and Lasers in Engineering, 1995, 23(1): 1~28

[9] Zhang Shulian, He Wenkai. The laser mode split by rotating an intracavity, tilt cut crystal quartz plate around its surface normal axis[J]. Opt. Commun., 1993, 97(3): 210~214

[10] Zhang Shulian, Li Kelian, Jin Guofan. Birefringence cavity dual frequency lasers and relative mode splitting[J]. Opt. Engng., 1994, 33(7): 2430~2433

[11] Yang Sen, Zhang Shulian. The frequency split phenomenon in a He-Ne laser with a rotation quartz crystal plate in its cavity[J]. Opt. Commun., 1988, 68(1): 55~57

[12] Zhang Shulian, Wu Minxian, Jin Guofan. Birefringent tuning double frequency He-Ne lasser[J]. Appl. Opt., 1990, 29: 1265~1267

[13] 成相印, 张书练, 殷纯永 等. 双折射双频激光器输出光偏振特性的实验研究[J]. 光学学报, 1995, 15(5): 548~551

    Cheng Xiangyin, Zhang Shulian, Yin Chunyong et al.. Polarization characteristics of a He-Ne laser with a rotatable quartz plate in its cavity[J]. Acta Optica Sinica. 1995, 15(5): 548~551

[14] 李嘉, 张书练. 石英晶体旋光性对激光纵模分裂的影响[J]. 中国激光, 1995, A22(1): 40~44

    Li Jia, Zhang Shulian. Optical activity′s influence on mode splitting in crystal quartz[J]. Chinese J. Lasers, 1995, A22(1): 40~44

[15] 郭继华, 神帅, 蒋建华 等. 双折射双频激光器偏振特性的分析[J]. 光学学报, 1996, 16(1): 32~36

    Guo Jihua, Shen Shuai, Jiang Jianhua et al.. Study on polarization state of a He-Ne laser with a activity plate in its cavity[J]. Acta Optica Sinica. 1996, 16(1): 32~36

[16] 郭继华, 神帅, 蒋建华 等. 双折射双频激光器频差特性分析[J]. 光学学报, 1996, 16(6): 716~720

    Guo Jihua, Shen Shuai, Jiang Jianhua et al.. Study on beat frequency of a He-Ne laser with an activity plate in its cavity[J]. Acta Optica Sinica.1996, 16(6): 716~720

[17] Zhang Shulian, Han Yanmei. Method and experiments on the linearly splitting He-Ne laser modes[J]. Chinese J. Lasers, 1995, B4(1): 61~64

[18] Zhang Shulian, Li Jia, Han Yanmei. Study of displacement sensing based on laser mode splitting by intracavity quartz crystal wedges of He-Ne lasers[J]. Opt. Engng., 1998, 37(6): 1800~1803

[19] Zhang Shulian, Li Dacheng. Using beat frequency lasers to measure micro-displacement and gravity[J]. Appl. Opt., 1988, 27(1): 20~21

[20] Zhang Shulian, Lu Min, Wu Minxian et al.. Laser frequency split by an electro-optical element in its cavity[J]. Opt. Commun., 1993, 96(4): 245~248

[21] Zhang Shulian, Li Kelan, Wu Minxian et al.. The pattern of mode competition between two frequencies produced by mode split technology with tuning of the cavity length[J]. Opt. Commun., 1992, 90(4): 279~282

[22] Zhang Shulian, Han Yanmei. Tuning curves of 70 MHz mode split by tuning cavity[J]. Chin. Phys. Lett., 1993, 10(12): 728~730

[23] Zhang Shulian, Liu Gang. Orthogonal linear polarized lasers (II)—study on the physical phenomena[J]. Progress in Natural Science, 2005, 15(10): 865~876

[24] Zong Xiaobin, Liu Weixin, Zhang Shulian. Intensity tuning characters of frequency split lasers[J]. Chin. Phys. Lett., 2005, 22(8): 1906~1908

[25] Zhang Shulian, Jin Yuye, Fu Jie et al.. Mode suppression, its elimination, and generation of small frequency differences in birefringence He-Ne lasers[J]. Opt. Engng., 2001, 40(4): 594~597

[26] Fu Jie, Zhang Shulian, Han Yanmei et al.. Mode suppression phenomena in a mode splitting He-Ne laser[J]. Chinese J. Lasers, 2000, B9(6): 499~503

[27] Li Yan, Zhang Shulian, Han Yanmei et al.. Displacement sensing He-Ne laser with λ/8 accuracy and self-calibration[J]. Opt. Engng., 2000, 39(11): 3039~3043

[28] W. X. Liu, W. Holzapfel, J. Zhu et al.. Differential variation of laser longitudinal mode spacing induced by small intra-cavity phase anisotropies[J]. Opt. Commun., 2009, 282(8): 1602~1606

[29] Xiao Yan, Zhang Shulian, Li Yan et al.. Tuning characteristics of frequency difference tuning of Zeeman-birefringence He-Ne dual frequency lasers[J]. Chinese Physics Letters, 2003, 20(2): 230~233

[30] W. X. Liu, M. Liu, S. L. Zhang. Method for the measurement of phase retardation of any wave plate with high precision[J]. Appl. Opt., 2009, 47(32): 5562~5569

[31] Fei Ligang, Zhang Shulian. Self-mixing interference effects of orthogonally polarized dual frequency laser[J]. Opt. Express, 2004, 12(25): 6101~6105

[32] Li Lu, Shulian Zhang, Shiqun Li et al.. The new phenomena of orthogonally polarized lights in laser feedback[J]. Opt. Commun., 2001, 200(1-6): 303~307

[33] Fei Ligang, Zhang Shulian. The discovery of nanometer fringes in laser self-mixing interference[J]. Opt. Commun., 2007, 273(1): 226~230

[34] Tan Yidong, Zhang Shulian. External anisotropic feedback effects on the phase difference behavior of output intensities in microchip NdYAG lasers[J]. Appl. Phys. B, 2007, 89: 339~343

[35] Tan Yidong, Zhang Shulian. Laser feedback interferometry based on phase difference of orthogonally polarized lights in external birefringence cavity[J]. Opt. Express, 2009, 17(16): 13939~13945

[36] Mao Wei, Zhang Shulian, Zhang Lianqing et al.. Optical feedback characteristics in He-Ne dual frequency lasers[J]. Chin. Phys. Lett., 2006, 23(5): 1188~1191

[37] Cui Liu, Zhang Shulian. Semi-classical theory model for feedback effect of orthogonally polarized dual frequency He-Ne laser[J]. Opt. Express, 2005, 13(17): 6558~6563

[38] Tan Yidong, Zhang Shulian, Wan Xinyun et al.. Mode hopping in single-mode microchip NdYAG lasers induced by optical feedback[J]. Chin. Phys., 2006, 15(12): 2934~2941

[39] Tan Yidong, Zhang Shulian. Influence of external cavity length on multimode hopping in microchip NdYAG lasers[J]. Appl. Opt., 2008, 47(11): 1697~1704

[40] Tan Yidong, Zhang Shulian, Ren Cheng et al.. Measurement of a polarization cross-saturation coefficient in two-mode NdYAG lasers by polarized optical feedback[J]. J. Phys. B-At., Mol. Opt. Phys., 2009, 42: 025401~025405

[41] Zhang Shulian, Fei Ligang. Orthogonally polarized optical feedback in lasers[J]. Opt. Engng., 2006, 45(11): 114201

[42] Liu Gang, Zhang Shulian Zhu Jun. Optical feedback laser with a quartz crystal plate in the external cavity[J]. Appl. Opt., 2003, 42(33): 6636~6639

[43] Fei Ligang, Zhang Shulian, Zong Xiaobin. Polarization flipping and intensity transfer in laser with optical feedback from an external birefringence cavity[J]. Opt. Commun., 2005, 246(4-6): 505~510

[44] Tan Yidong, Zhang Shulian. Intensity tuning in single mode microchip NdYAG laser with external cavity[J]. Chin. Phys. Lett., 2006, 23(12): 3271~3274

[45] Liu Gang, Zhang Shulian, Li Yan et al.. Optical feedback characteristics in a dual frequency laser during laser cavity tuning[J]. Chin. Phys., 2005, 14(10): 1984~1989

[46] Mao Wei, Zhang Shulian. Effects of optical feedback in a birefringence-Zeeman dual frequency laser at high optical feedback levels[J]. Appl. Opt., 2007, 46(12): 2286~2291

[47] Mao Wei, Zhang Shulian, Tan Yidong et al.. External optical feedback effects in a frequency locking dual frequency laser[J]. Opt. Commun., 2007, 271(2): 492~498

[48] Wan Xinjun, Zhang Shulian. Self-mixing interference in dual polarization microchip NdYAG lasers[J]. Chin. Phys. Lett., 2004, 21(11): 2175~2178

[49] Cui Liu, Zhang Shulian. Optical feedback effects in orthogonally polarized dual frequency He-Ne laser[J]. Opt. Commun., 2007, 275(1): 201~205

[50] Cheng Xiang, Zhang Shulian. Multiple selfmixing effect in VCSELs with asymmetric external cavity[J]. Opt. Commun., 2006, 260(1): 50~56

[51] Cheng Xiang, Zhang Shulian, Intensity modulation of VCSELs under feedback with two reflectors and self-mixing interferometer[J]. Opt. Commun., 2007, 272(2): 420~424

张书练. 正交偏振双纵模激光器腔调谐物理效应[J]. 激光与光电子学进展, 2011, 48(5): 051401. Zhang Shulian. Physical Characteristics of Orthogonally Polarized Dual Frequency Laser by Cavity Tuning[J]. Laser & Optoelectronics Progress, 2011, 48(5): 051401.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!