激光与光电子学进展, 2014, 51(10): 100004, 网络出版: 2014-05-01

光的自旋和轨道角动量

Spin and Orbital Angular Momentum of Light
作者单位

山东理工大学理学院, 山东 淄博 255049

摘要
光具有由偏振性决定的自旋角动量(SAM)和由光场空间分布决定的轨道角动量(OAM)两种不同的物理性质。重点对光的自旋和轨道角动量在光束生成和变换性质、存在形式和描述方法、力学效应、空间相干性和时间相干性、角向多普勒频移效应及参量转换与量子纠缠等方面进行对比,探索它们的现象学差别,以期更好地理解光的本性,为该领域的研究提供启发和拓展思路。总结和分析了轨道角动量的最新研究成果,并展望了该领域的最新研究动态。
Abstract
Spin angular momentum (SAM) and orbital angular momentum (OAM) are two absolutely different physical properties of light which are determined by the polarization and spatial distribution, respectively. The comparison of the two properties is performed in terms of demonstrated about the generation and conversion, existence form and description method, mechanical effect, spatial and time coherence, angular Doppler effect, parameter conversion and quantum entanglement, etc. The phenomenology provides much of the basis for the exploration and exploitation of the field. The progress of OAM development with an eye towards the promising future in the field is reviewed and analyzed.
参考文献

[1] Beth R A. Mechanical detection and measurement of the angular momentum of light[J]. Physical Review, 1936, 50(2): 115-123.

[2] Allen L, Beijersbergen M W, Spreeuw R J C, et al.. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 1992, 45(11): 8185-8189.

[3] 陆璇辉, 黄慧琴, 赵承良, 等. 涡旋光束和光学涡旋[J]. 激光与光电子学进展, 2008, 45(1): 50-56.

Lu Xuanhui, Huang Huiqin, Zhao Chengliang, et al.. Optical vortex beams and optical vortices[J]. Laser & Optoelectronics Progress, 2008, 45(1): 50-56.

[4] Leach J, Yao E, Padgett M. Observation of the vortex structure of a non-integer vortex beam[J]. New Journal of Physics, 2004, 6(1): 71.

[5] Curtis J E, Grier D G. Structure of optical vortices[J]. Physical Review Letters, 2003, 90(13): 133901.

[6] Courtial J. Self-imaging beams and the Guoy effect[J]. Optics Communications, 1998, 151(1-3): 1-4.

[7] Mair A, Vaziri A, Weihs G, et al.. Entanglement of the orbital angular momentum states of photons[J]. Nature, 2001, 412(6844): 313-316.

[8] Beijersbergen M W, Allen L, van der Veen H E L O, et al.. Astigmatic laser mode converters and transfer of orbital angular momentum[J]. Optics Communications, 1993, 96(1-3): 123-132.

[9] Porras M A, Borghi R, Santarsiero M. Relationship between elegant Laguerre-Gauss and Bessel-Gauss beams[J]. Journal of the Optical Society of America A, 2001, 18(1): 177-184.

[10] Gutierez-Vega J C, Iturbe-Castillo M D, Cháez-Cerda S. Alternative formulation for invariant optical fields: Mathieu beams[J]. Optics Letters, 2000, 25(20): 1493-1495.

[11] Bandres M A, Gutierez-Vega J. Ince Gaussian beams[J]. Optics Letters, 2004, 29(2): 144-146.

[12] Padgett M, Courtial J, Allen L. Light's orbital angular momentum[J]. Physics Today, 2004, 57(5): 35-40.

[13] Berry M V. Singularities in waves and rays[M]. // Physics of Defects, Balian R, Kleman M, Poirier J P (eds.). Amsterdam: North-Holland Publishing Company, 1981. 453-543.

[14] Fühapter S, Jesacher A, Bernet S, et al.. Spiral phase contrast imaging in microscopy[J]. Optics Express, 2005, 13(3): 689-694.

[15] Leach J, Keen S, Padgett M J, et al.. Direct measurement of the skew angle of the Poynting vector in a helically phased beam[J]. Optics Express, 2006, 14(25): 11919-11924.

[16] 丁攀峰, 蒲继雄. 高斯涡旋光束的动量及轨道角动量与拓扑电荷数的关系及其在自由空间中的传输[J]. 中国科学: 物理学力学天文学, 2013, 43(6): 725-731.

Ding Panfeng, Pu Jixiong. Relation of momentum and orbital angular momentum of Gaussian vortex beam with topological charge and their propagation in free space[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2013, 43(6): 725-731.

[17] 丁攀峰, 蒲继雄. 离轴拉盖尔-高斯涡旋光束传输中的光斑演变[J]. 物理学报, 2012, 61(6): 064103.

Ding Panfeng, Pu Jixiong. Change of the off-center Laguerre-Gaussian vortex beam while propagation[J]. Acta Physica Sinica, 2012, 61(6): 064103.

[18] 丁攀峰, 蒲继雄. 离轴高斯涡旋光束的轨道角动量研究[J]. 中国科学: 物理学力学天文学, 2014, 44(5): 449-456.

Ding Panfeng, Pu Jixiong. Research on orbital angular momentum of off axial Gaussian vortex beam[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2014, 44(5): 449-456.

[19] Guo C, Zhang Y, Han Y, et al.. Generation of optical vortices with arbitrary shape and array via helical phase spatial filtering[J]. Optics Communications, 2006, 259(2): 449-454.

[20] Wei G, Lu L, Guo C. Generation of optical vortex array based on the fractional Talbot effect[J]. Optics Communications, 2009, 282(14): 2665-2669.

[21] O′Holleran K, Padgett M J, Dennis M R. Topology of optical vortex lines formed by the interference of three, four, and five plane waves[J]. Optics Express, 2006, 14(7): 3039-3044.

[22] O′Holleran K, Dennis M R, Padgett M J. Topology of light's darkness[J]. Physical Review Letters, 2009, 102(14): 143902.

[23] O′Neil A T, Macvicar I, Allen L, et al.. Intrinsic and extrinsic nature of the orbital angular momentum of a light beam[J]. Physical Review Letters, 2002, 88(5): 053601.

[24] Padgett M J, Courtial J. Poincare-sphere equivalent for light beams containing orbital angular momentum[J]. Optics Letters, 1999, 24(7): 430-432.

[25] Allen L, Courtial J, Padgett M J. Matrix formulation for the propagation of light beams with orbital and spin angular momenta[J]. Physical Review E, 1999, 60(6): 7497-7503.

[26] 郁道银, 谈恒英. 工程光学[M]. 北京: 机械工业出版社, 2011.

Yu Daoyin, Tan Hengying. Engneering Optics[M]. Beijing: China Machine Press, 2011.

[27] 魏功祥. 光学涡旋的衍射特性、生成及检测方法的研究[D].济南:山东师范大学, 2010.

Wei Gongxiang. On the Generation, Diffractive Properties, and Mearsurement of Optical Vortices[D]. Jinan: Shangdong Normal University, 2010.

[28] Berkhout G C G, Beijersbergen M W. Method for probing the orbital angular momentum of optical vortices in electromagnetic waves from astronomical objects[J]. Physical Review Letters, 2008, 101(10): 100801.

[29] Guo C, Yue S, Wei G. Measuring the orbital angular momentum of optical vortices using a multipinhole plate[J]. Applied Physics Letters, 2009, 94(23): 231104.

[30] Guo C, Lu L, Wang H. Characterizing topological charge of optical vortices by using an annular aperture[J]. Optics Letters, 2009, 34(23): 3686-3688.

[31] Han Y, Zhao G. Measuring the topological charge of optical vortices with an axicon[J]. Optics Letters, 2011, 36(11): 2017-2019.

[32] Vasnetsov M V, Slyusar V V, Soskin M S. Mode separator for a beam with an off-axis optical vortex[J]. Quantum Electronics, 2001, 31(5): 464-466.

[33] Leach J, Courtial J, Skeldon K, et al.. Interferometric methods to measure orbital and spin, or the total angular momentum of a single photon[J]. Physical Review Letters, 2004, 92(1): 13601.

[34] Grier D G. A revolution in optical manipulation[J]. Nature, 2003, 424(6950): 810-816.

[35] Grier D G, Roichman Y. Holographic optical trapping[J]. Applied Optics, 2006, 45(5): 880-887.

[36] Padgett M J. Optics: Droplets set light in a spin[J]. Nature, 2009, 461(7264): 600-601.

[37] Tabosa J W R, Barreiro S. Generation of light carrying orbital angular momentum via induced coherence grating in cold atoms[J]. Physical Review Letters, 2003, 90(13): 133001.

[38] Khaykovich L, Davidson N, Ozeri R. Long spin relaxation times in a single-beam blue-detuned optical trap[J]. Physical Review A, 1999, 59(3): R1750-R1753.

[39] Ryu C, Clade P, Natarajan V, et al.. Quantized rotation of atoms from photons with orbital angular momentum[J]. Physical Review Letters, 2006, 97(17): 170406.

[40] Leslie L S, Bigelow N P, Wright K C. Optical control of the internal and external angular momentum of a Bose-Einstein condensate[J]. Physical Review A, 2008, 77(4): 041601.

[41] Allen L, Babiker M, Power W L. Azimuthal doppler shift in light beams with orbital angular momentum[J]. Optics Communications, 1994, 112(3-4): 141-144.

[42] Leach J, Padgett M J. Observation of chromatic effects near a white-light vortex[J]. New Journal of Physics, 2003, 5:154.

[43] Leach J, Gibson G M, Padgett M J, et al.. Generation of achromatic Bessel beams using a compensated spatial light modulator[J]. Optics Express, 2006, 14(12): 5581-5587.

[44] Maleev I D, Marathay A S, Swartzlander G A, et al.. Spatial correlation singularity of a vortex field[J]. Physical Review Letters, 2004, 92(14): 143905.

[45] Hernandez-Aranda R I, Swartzlander G A. Optical Rankine vortex and anomalous circulation of light[J]. Physical Review Letters, 2007, 99(16): 163901.

[46] 付文羽, 李高清, 刘小军. 部分相干涡旋光束在大气湍流中的远场传输特性[J]. 光学学报, 2009, 29(11): 2958-2962.

Fu Wenyu, Li Gaoqing, Liu Xiaojun. Propagation of partially coherent vortex beams in the turbulent atmosphere[J]. Acta Optica Sinica, 2009, 29(11): 2958-2962.

[47] 程科, 张洪润, 吕百达. 部分相干涡旋光束形成的相干涡旋特性研究[J]. 物理学报, 2010, 59(1): 246-255.

Cheng Ke, Zhang Hongrun, Lü Baida. Coherence vortex properties of partially coherent vortex beams[J]. Acta Physica Sinica, 2010, 59(1): 246-255.

[48] Swartzlander J G A, Ford E L, Abdul-Malik R S, et al.. Astronomical demonstration of an optical vortex coronagraph [J]. Optics Express, 2008, 16(14): 10200-10207.

[49] Foo G, Palacios D M, Swartzlander J G A. Optical vortex coronagraph[J]. Optics Letters, 2005, 30(24): 3308-3310.

[50] Lee J H, Foo G, Johnson E G, et al.. Experimental verification of an optical vortex coronagraph[J]. Physical Review Letters, 2006, 97(5): 053901.

[51] Padgett M J. Electromagnetism: Like a speeding watch[J]. Nature, 2006, 443(7114): 924-925.

[52] Courtial J, Dholakia K, Robertson D A, et al.. Measurement of the rotational frequency shift imparted to a rotating light beam possessing orbital angular momentum[J]. Physical Review Letters, 1998, 80(15): 3217-3219.

[53] Courtial J, Robertson D A, Dholakia K, et al.. Rotational frequency shift of a light beam[J]. Physical Review Letters, 1998, 81(22): 4828-4830.

[54] Skeldon K D, Wilson C, Edgar M, et al.. An acoustic spanner and its associated rotational Doppler shift[J]. New Journal of Physics, 2008, 10(1): 013018.

[55] Yao E, Franke-Arnold S, Courtial J, et al.. Fourier relationship between angular position and optical orbital angular momentum[J]. Optics Express, 2006, 14(20): 9071-9076.

[56] Jack B, Padgett M J, Franke-Arnold S. Angular diffraction[J]. New Journal of Physics, 2008, 10(10): 103013.

[57] Padgett M. On the focussing of light, as limited by the uncertainty principle[J]. Journal of Modern Optics, 2008, 55(18): 3083-3089.

[58] Franke-Arnold S, Barnett S M, Yao E, et al.. Uncertainty principle for angular position and angular momentum[J]. New Journal of Physics, 2004, 6: 103.

[59] Dholakia K, Simpson N B, Padgett M J, et al.. Second-harmonic generation and the orbital angular momentum of light [J]. Physical Review A, 1996, 54(5): R3742-R3745.

[60] Courtial J, Dholakia K, Allen L, et al.. Second-harmonic generation and the conservation of orbital angular momentum with high-order Laguerre-Gaussian modes[J]. Physical Review A, 1997, 56(5): 4193-4196.

[61] Torres J P, Osorio C I, Torner L. Orbital angular momentum of entangled counter propagating photons[J]. Optics Letters, 2004, 29(16): 1939-1941.

[62] Arnaut H H, Barbosa G A. Orbital and intrinsic angular momentum of single photons and entangled pairs of photons generated by parametric down-conversion[J]. Physical Review Letters, 2000, 85(2): 286-289.

00 11