激光与光电子学进展, 2014, 51 (2): 020001, 网络出版: 2014-02-18   

高功率光纤激光中模式不稳定性现象研究进展 下载: 994次

Progress of Study on Mode Instability in High Power Fiber Amplifiers
作者单位
国防科学技术大学光电科学与工程学院, 湖南 长沙 410073
摘要
模式不稳定指高功率光纤激光随着输出功率提升发生的由稳态基模输出突然变为非稳态高阶模式输出的模式突变,会导致光束质量下降,限制着衍射极限光束质量光纤激光输出功率的提升。介绍了高功率光纤激光中模式不稳定现象的产生机理以及相关的实验和理论研究,详细分析了模式不稳定现象的一些性质,总结了解决或抑制高功率光纤激光中模式不稳定现象的方法。最后,对高功率光纤激光模式不稳定现象研究的未来发展趋势进行了初步探讨。
Abstract
Mode instability (MI) is an abrupt mode change when the average output power increases above a certain threshold power, which results in degradation of beam quality and currently limits the power scaling of diffraction-limited high power fiber laser. The investigation progress on MI in high power fiber amplifiers is introduced in detail. The characteristics of MI are described and the ways to mitigateMI and increase the threshold power are summarized. The development trends of study on MI in high power fiber amplifier are briefly discussed.
参考文献

[1] D J Richardson, J Nilsson, W A Clarkson. High power fiber lasers: current status and future perspectives [J]. J Opt Soc Am B, 2010, 27(11): B63-B92.

[2] 魏敬波, 胡贵军, 杜 洋, 等. 全光增益控制高功率光纤放大器[J]. 光学学报, 2013, 33(7): 0706012.

    Wei Jingbo, Hu Guijun, Du Yang, et al.. High power all-optical gain-clamped fiber amplifier [J]. Acta Optica Sinica, 2013, 33(7): 0706012.

[3] 周 军, 何 兵, 薛宇豪, 等. 高功率光纤激光阵列被动相干组束技术研究[J]. 光学学报, 2011, 31(9): 0900129.

    Zhou Jun, He Bing, Xue Yuhao, et al. Study on passive coherent beam combination technology of high power fiber laser arrays [J]. Acta Optica Sinica, 2011, 31(9): 0900129.

[4] 代守军, 何 兵, 周 军, 等. 高功率散热技术及高功率光纤激光放大器[J]. 中国激光, 2013, 40(5): 0502003.

    Dai Shoujun, He Bing, Zhou Jun, et al.. Cooling technology of high-power and high-power fiber laser amplifier [J]. Chinese J Lasers, 2013, 40(5): 0502003.

[5] 闫 平, 肖起榕, 付 晨, 等. 1.6 kW全光纤掺镱激光器[J]. 中国激光, 2012, 39(4): 0416001.

    Yan Ping, Xiao Qirong, Fu Chen, et al.. 1.6 kW Yb-doped all-fiber laser[J]. Chinese J Lasers, 2012, 39(4): 0416001.

[6] 李 杰, 陈子伦, 周 航, 等. 高功率光纤激光器抽运耦合技术的现状和发展[J]. 激光与光电子学进展, 2012, 49(2): 020003.

    Li Jie, Chen Zilun, Zhou Hang, et al.. Status and development of pumping technology for high power fiber lasers [J]. Laser & Optoelectronics Progress, 2012, 49(2): 020003.

[7] C Jauregui, T Eidam, H-J Otto, et al.. Physical origin of mode instabilities in high-power fiber laser systems [J]. Opt Express, 2012, 20(12): 12912-12925.

[8] T Eidam, C Wirth, C Jauregui, et al.. Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers [J]. Opt Express, 2011, 19(14): 13218-13224.

[9] D Engin, W Lu, H Verdun, et al.. High power modal instability measurements of very large mode area (VLMA) step index fibers [C]. SPIE, 2013, 8733: 87330J.

[10] T Eidam, S Hanf, E Seise, et al.. Femtosecond ber CPA system emitting 830 W average output power [J]. Opt Lett, 2010, 35(2): 94-96.

[11] F Stutzki, H-J Otto, F Jansen, et al.. High-speed modal decomposition of modeinstabilities in high-power fiber lasers [J]. Opt Lett, 2011, 36(23): 4572-4574.

[12] H-J Otto, C Jauregui, F Stutzki. Controlling mode instabilities by dynamic mode excitation with an acousto-optic deflector [J]. Opt Express, 2013, 21(14): 17285-17298.

[13] M Laurila, M M J rgensen, K R Hansen, et al.. Distributed mode filtering rod fiber amplifier delivering 292 W with improved mode stability [J]. Opt Express, 2012, 20(5): 5742-5753.

[14] F Jansen, F Stutzki, H J Otto, et al.. Thermally induced waveguide changes in active fibers [J]. Opt Express, 2012, 20(4): 3997-4008.

[15] B Ward, C Robin, I Dajani. Origin of thermal modal instabilities in large mode area fiber amplifiers [J]. Opt Express, 2012, 20(10): 11407-11422.

[16] H-J Otto, F Stutzki, F Jansen, et al.. Temporal dynamics of mode-instabilities in high power fiber lasers and amplifiers [J]. Opt Express, 2012, 20(14): 15710-15722.

[17] N Haarlammert, O de Vries, A Liem, et al.. Build up and decay of mode instability in a high power fiber amplifier [J]. Opt Express, 2012, 20(12): 13274-13283.

[18] C Jauregui, T Eidam, J Limpert, et al.. The impact of modal interference on the beam quality of high-power fiber amplifiers [J]. Opt Express, 2011, 19(4): 3258-3271.

[19] A V Smith, J J Smith. Mode instability in high power fiber amplifiers [J]. Opt Express, 2011, 19(11): 10180-10192.

[20] A V Smith, Jesse J Smith. Steady-periodic method for modelingmode instability in ber ampli ers [J]. Opt Express, 2013, 21(3): 2606-2623.

[21] A V Smith, J J Smith. In uence of pump and seed modulationon the mode instability thresholds of ber ampli ers [J]. Opt Express, 2012, 20(22): 24545-24558.

[22] K R Hansen, T T Alkeskjold, J Broeng, et al.. Thermally induced mode coupling in rare-earthdoped fiber amplifiers [J]. Opt Lett, 2012, 37(12): 2382-2384.

[23] K R Hansen, T T Alkeskjold, J Broeng, et al.. Theoretical analysis of mode instabilityin high-power ber ampli ers [J]. Opt Express, 2013, 21(2): 1944-1971.

[24] L Dong. Stimulated thermal Rayleigh scattering in optical fibers [J]. Opt Express, 2013, 21(3): 2642-2656.

[25] I-Ning Hu, C Zhu, C Zhang, et al.. Analytical time-dependenttheory of thermally-induced modal instabilities in high power ber amplifiers [C]. SPIE, 2013, 8601: 860109.

[26] C Jauregui, H-J Ottoa, F Jansena, et al.. Mode instabilities: physical origin and mitigation strategies [C]. SPIE, 2013, 8601:86010F.

[27] C Jauregui, H-J Otto, F Stutzki, et al.. Passive mitigation strategies for mode instabilities in high-power fiber laser systems [J]. Opt Express, 2013, 21(16): 19375-19386.

[28] B Ward. Modeling of transient modal instability in fiber amplifiers [J]. Opt Express, 2013, 21(10): 12053-12067.

[29] S Naderi, I Dajani, T Madden, et al.. Investigations of modal instabilities in fiber amplifiers through detailed numerical simulations [J]. Opt Express, 2013, 21(13): 16111-16129.

[30] C Wirth, T Schreiber, M Rekas, et al. High-power linear-polarized narrow linewidth photonic crystal fiber amplifier [C]. SPIE, 2010, 7580: 75801H.

[31] O Schmidt, M Rekas, C Wirth, et al.. High power narrow-band fiber-based ASE source [J]. Opt Express, 2011, 19(5): 4421-4427.

[32] T Eidam, S H drich, F Jansen, et al.. Preferential gain photonic-crystal fiber for mode stabilization at high average powers [J]. Opt Express, 2011, 19(9): 8656-8661.

[33] F Stutzki, F Jansen, T Eidam, et al.. High average power large-pitch fiber amplifier with robust single-mode operation [J]. Opt Lett, 2011, 36(5): 689-691.

[34] M M J rgensen, M Laurila, D Noordegraaf, et al.. Thermal-recovery of modal instability in rod fiber amplifiers [C]. SPIE, 2013, 8601: 86010U.

[35] C Wirth, O Schmidt, I Tsybin, et al.. High average power spectral beam combiningof four fiber amplifiers to 8.2 kW [J]. Opt Lett, 2011, 36(16): 3118-3120.

[36] C Jocher, T Eidama, S H dricha, et al.. 23 fs pulses at 250 W of average power from a FCPA with solid core nonlinear compression [C]. SPIE, 2013, 8601: 86011F.

[37] M Karow, H Tünnermann, J Neumann, et al.. Beam quality degradation of a single-frequency Yb-dopedphotonic crystal fiberamplifier with low mode instability threshold power [J]. Opt Lett, 2012, 37(20): 4242-4244.

[38] M Laurila, J Saby, T T Alkeskjold, et al.. Q-switching and efficient harmonic generation from a single-mode LMA photonic bandgap rod fiber laser [J]. Opt Express, 2011, 19 (11): 10824-10833.

[39] T J Wagner. Fiber laser beam combining and power scaling progress, Air Force Research Laboratory Laser Division [C]. SPIE, 2012, 8237: 823718.

[40] 陶汝茂, 王小林, 肖 虎, 等. 高功率光纤放大器中模式不稳定阈值功率的理论研究 [J]. 光学学报, 2014, 34(1): 0114002.

    Tao Rumao, Wang Xiaolin, Xiao Hu, et al.. Theoretical study of the threshold power of mode instability in high-power fiber amplifiers [J]. Acta Optica Sinica, 2014, 34(1): 0114002.

[41] C Robin, I Dajani, C Zeringue, et al.. Gain-tailored SBS suppressing photonic crystal fibers for high powerapplications [C]. SPIE, 2012, 8237: 82371D.

陶汝茂, 周朴, 肖虎, 王小林, 司磊, 刘泽金. 高功率光纤激光中模式不稳定性现象研究进展[J]. 激光与光电子学进展, 2014, 51(2): 020001. Tao Rumao, Zhou Pu, Xiao Hu, Wang Xiaolin, Si Lei, Liu Zejin. Progress of Study on Mode Instability in High Power Fiber Amplifiers[J]. Laser & Optoelectronics Progress, 2014, 51(2): 020001.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!