激光与光电子学进展, 2015, 52 (10): 100102, 网络出版: 2015-10-08   

对流式湍流模拟装置湍流模拟稳定性研究 下载: 597次

Research on Turbulence Stability Characteristic of Convection Turbulence Simulator
作者单位
1 长春理工大学空地激光通信技术国防重点学科实验室, 吉林 长春 130022
2 长春理工大学光电工程学院, 吉林 长春 130022
3 长春理工大学电子信息工程学院, 吉林 长春 130022
摘要
为评价对流式湍流模拟装置的性能,验证所模拟湍流的稳定性,提高湍流模拟器装置的可信度,从区域稳定性、频谱稳定性以及不同波长条件下大气相干长度的变化情况3 个方面进行了详细的检测与分析。在不同位置选取21 个点进行独立测量,对模拟装置的光强闪烁与角起伏区域稳定性进行了检测与评价。采用532、808、1064、1550 nm4 种波长激光器与检测装置,以大气相干长度作为检测指标对模拟装置所模拟湍流的大气相干长度随波长的变化情况进行了检测。最后,对测量数据的强度起伏与角起伏进行了频谱分析以评价模拟装置的频谱稳定性。实验结果表明:对流式湍流模拟装置在16 cm×16 cm 区域内的波动量小于15%,不同波长条件下相干长度满足Kolmogrov 理论,频谱波动量小于20%,对大气湍流进行了高精度、高可靠性、高稳定性的模拟。该研究内容为对流式湍流模拟装置的使用提供了有效的依据。
Abstract
In order to evaluate the performance of the convection turbulence simulator, the stability of the simulate turbulence is tested and the credibility of the turbulence simulator is improved. The measurement and analysis are done from three aspects of regional stability, wavelength stability and frequency stability by using specific instrument. 21 points in specific locations are chosen for testing the regional stability of scintillation and angle-of-arrival. By using the coherence length as the indicator, 532 nm, 808 nm, 1064 nm and 1550 nm lasers are used to test the wavelength stability of the convection turbulence simulator. Finally, the spectra of scintillation and angle-of-arrival are analyzed to test the spectral stability of turbulence simulator. The experimental results show that, the performance fluctuation of the convection turbulence simulator in a 16 cm ×16 cm area is less than 15%, the coherence length fluctuation under four wavelengths meets Kolmogrov theory and the spectrum fluctuation is less than 20%. The turbulence simulator can simulate the atmospheric turbulence with high precision, high reliability and high stability. The research provides a strong support for the applications of the convection turbulence simulator.
参考文献

[1] 刘扬阳, 吕群波, 张文喜. 大气湍流畸变对空间目标清晰干涉成像仿真研究[J]. 物理学报, 2012, 61(12): 124201.

    Liu Yangyang, Lü Qunbo, Zhang Wenxi, et al.. Simulation for space target interference imaging system distorted by atmospheric turbulence[J]. Acta Physica Sinica, 2012, 61(12): 124201.

[2] 柳光乾, 杨磊, 邓林华, 等. 大气湍流对天文望远镜光电导行精度的影响[J]. 光学学报, 2013, 33(1): 0101002.

    Liu Guangqian, Yang Lei, Deng Linhua, et al.. Influnce of atmospheric turbulence on the accuracy of astronomical telescope auto-guiding system[J]. Acta Optica Sinica, 2013, 33(1): 0101002.

[3] 陈纯毅, 杨华民, 姜会林, 等. 大气光通信中大孔径接收性能分析与尺寸选择[J]. 中国激光, 2009, 36 (11): 2957-2961.

    Chen Chunyi, Yang Huamin, Jiang Huilin, et al.. Performance analysis of large-aperture receiving and selection of aperture size in atmospheric optical communications[J]. Chinese J Lasers, 2009, 36(11): 2957-2961.

[4] 罗文, 耿超, 李新阳, 等. 大气湍流像差对单模光纤耦合效率的影响分析及实验研究[J]. 光学学报, 2014, 34(6): 0606001.

    Luo Wen, Geng Chao, Li Xinyang, et al.. Simulation and experimental study of single-mode fiber coupling efficiency affected by atmospheric turbulence aberration[J]. Acta Optica Sinica, 2014, 34(6): 0606001.

[5] 韩立强, 王祁, 信台克归, 等. 大气湍流下自由空间光通信中断概率分析[J]. 红外与激光工程, 2010, 39(4): 660-663.

    Han Liqiang, Wang Qi, Xinke Taigui, et al.. Outage probability of free space optical communication over atmospheric turbulence[J]. Infrared and Laser Engineering, 2010, 39(4): 660-663.

[6] 王俊波, 盛明, 谢秀秀, 等. 强湍流下并行中继自由空间光通信的中断分析[J]. 光学 精密工程, 2012, 20(4): 745-751.

    Wang Junbo, Sheng Ming, Xie Xiuxiu, et al.. Outage analysis for parallel relay free-space optical communication in strong turbulence[J]. Optics and Precision Engineering, 2012, 20(4): 745-751.

[7] 宋鸿飞, 车英, 赵馨, 等. 湍流环境中光纤耦合效率的提高[J]. 光学 精密工程, 2014, 22(12): 3205-3211.

    Song Hongfei, Che Ying, Zhao Xin, et al.. Improvement of fiber coupling efficiency in atmospheric turbulence[J]. Optics and Precision Engineering, 2014, 22(12): 3205-3211.

[8] 张士杰, 李俊山, 杨亚威, 等. 湍流退化红外图像降晰函数辨识[J]. 光学 精密工程, 2013, 21(2): 514-521.

    Zhang Shijie, Li Junshan, Yang Yawei, et al.. Blur identification of turbulence-degraded IR images[J]. Optics and Precision Engineering, 2013, 21(2): 514-521.

[9] 甘新基, 郭劲, 付有余, 等. 大气场景模拟器中的湍流模拟方法[J]. 半导体光电, 2006, 27(6): 764-766.

    Gan Xinji, Guo Jin, Fu Youyu, et al.. Simulating turbulence method of the atmosphere scene simulator[J]. Semiconductor Optoelectronics, 2006, 27(6): 764-766.

[10] 刘永军, 胡立发, 曹召良, 等. 液晶大气湍流模拟器[J]. 光子学报, 2006, 35(12): 1960-1963.

    Liu Yongjun, Hu Lifa, Cao Zhaoliang, et al.. Liquid crystal atmosphere turbulence simulator[J]. Acta Photonica Sinica, 2006, 35(12): 1960-1963.

[11] 景文博, 赵思, 付强, 等. 湍流特征光学测试对比[J]. 光子学报, 2012, 41(7): 805-811.

    Jing Wenbo, Zhao Si, Fu Qiang, et al.. Turbulence characteristics optical test contrast[J]. Acta Photonica Sinica, 2012, 41(7): 805-811.

[12] 曾志红, 罗秀娟, 王保峰, 等. 傅里叶望远镜大气湍流模拟实验[J]. 光子学报, 2014, 43(6): 0601002.

    Zeng Zhihong, Luo Xiujuan, Wang Baofeng, et al.. Laboratory simulation of atmosphere turbulence for Fourier telescopy [J]. Acta Photonica Sinica, 2014, 43(6): 0601002.

[13] 段梦云, 单欣, 艾勇. 激光大气湍流模拟装置的研究与进展[J]. 光通信技术, 2014, 1(1): 49-52.

    Duan Mengyun, Shan Xin, Ai Yong. Research and progress of laser atmospheric turbulence simulator[J]. Optical Communication Technology, 2014, 1(1): 49-52.

[14] 申永, 刘建国, 曾宗泳, 等. 大气湍流模拟装置性能测试[J]. 大气与环境光学学报, 2011, 6(2): 231-234.

    Shen Yong, Liu Jianguo, Zeng Zongyong, et al.. Performance testing of atmospheric turbulence simulator[J]. Journal of Atmospheric and Environmental Optics, 2011, 6(2): 231-234.

[15] Zhenzhong Wei, Guangjun zhang, Xin Li. The application of machine vision in inspecting position-control accuracy of motor control systems[C]. Fifth International Conference on Electrical Machines and Systems, 2001, 2: 787-790.

[16] Yijun Jiang, Jing Ma, Liying Tan, et al.. Measurement of optical intensity fluctuation over an 11.8 km turbulent path[J]. Opt Express, 2008, 16(10): 6963-6973.

[17] Wenhe Du, Liying Tan, Jing Ma, et al.. Measurements of angle-of-arrival fluctuations over an 11.8 km urban path[J]. Laser and Partical Beam, 2010, 28(1): 91-99.

倪小龙, 宋卢军, 姜会林, 付强, 刘艺, 张肃, 刘智. 对流式湍流模拟装置湍流模拟稳定性研究[J]. 激光与光电子学进展, 2015, 52(10): 100102. Ni Xiaolong, Song Lujun, Jiang Huilin, Fu Qiang, Liu Yi, Zhang Su, Liu Zhi. Research on Turbulence Stability Characteristic of Convection Turbulence Simulator[J]. Laser & Optoelectronics Progress, 2015, 52(10): 100102.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!