激光与光电子学进展, 2015, 52 (12): 120102, 网络出版: 2015-12-08   

基于宽谱大气CO2浓度探测的红外激光波长选择

Wavelength Choice for Infrared Laser Based on Atmospheric CO2 Concentration Wide Spectrum Measurement
作者单位
湖北工程学院物理与电子信息工程学院,湖北 孝感 432000
摘要
通过分析大气中CO2的超精细吸收光谱来选择适合宽谱大气CO2浓度探测的红外激光波长,为研制宽谱红外激光雷达提供了依据。宽谱红外激光雷达的光谱范围远大于普通差分吸收激光雷达的光谱范围,不需要较高的锁频技术,能够避免差分吸收激光雷达由于在on 波长处偏移引起的测量误差。对比大气中水汽的吸收光谱、超辐射发光二极管(SLED)的发光光谱,以及铟镓砷(InGaAs)红外探测器的响应光谱,可以在理论上确定满足大气CO2 浓度探测的宽谱红外激光中心波长约为1572 nm,波长范围约为1568~1575 nm。通过设计实验装置,得到中心波长为1571 nm,波长范围为1564~1578 nm,输出功率约为0.01 mW 的宽谱红外激光。该波段宽谱红外激光避开了大气中水汽吸收的影响,而且模块简单、容易实现,对实现利用宽谱红外激光雷达探测大气CO2浓度分布有一定的帮助。
Abstract
By analyzing the ultra fine atmospheric CO2 absorption spectrum, the infrared laser wavelength can be choiced for detecting the atmosphere CO2 concentration. It can provide the basis for a wide spectrum infrared lidar. The spectrum of wide spectrum infrared laser is much wider than the differential absorption lidar, and it has no use for high frequency locking technology. Also, this technology can avoid differential absorption lidar measurement error by the on wavelength shift. By analyzing the water vapour absorption spectrum, super luminescent diode (SLED)′s luminescent spectrum and InGaAs infrared detector′s response spectrum, the wide spectrum laser center wavelength is 1572 nm and the spectral range is 1568~1575 nm in theory. By the experimental laser source,the results show that the center wavelength is 1571 nm, the spectral range is 1564~1578 nm, the output power is 0.01 mW. This laser can avoid the influence by the water vapour absorption, and it is simple, low cost and easy to build. It can help for the development of the atmosphere CO2 concentration detecting by the wide spectrum infrared lidar.
参考文献

[1] G J Koch, J Y Beyon, F Gibert, et al.. Side-line tunable laser transmitter for differential absorption lidar measurements of CO2: Design and application to atmospheric measurements[J]. Appl Opt, 2008, 47(7): 944-956.

[2] G J Koch, B W Barnes, M Petros, et al.. Coherent differential absorption lidar measurements of CO2[J]. Appl Opt, 2004, 43 (26): 5092-5099.

[3] S Kameyama, M Imaki, Y Hirano, et al.. Development of 1.6 m continuous- wave modulation hard- target differential absorption lidar system for CO2 sensing[J]. Opt Lett, 2009, 34(10): 1513-1515.

[4] Aamediek, A Fix, G Ehret, et al.. Airborne lidar reflectance measurements at 1.57 μm in support of the A-SCOPE mission for atmospheric CO2[J]. Atmos Meas Tech, 2009, 2(2): 1487-1536.

[5] J Mao, S R Kawa. Sensitivity studies for space-based measurement of atmospheric total column carbon dioxide by reflected sunlight[J]. Appl Opt, 2004, 43(4): 914-927.

[6] 马昕, 林宏, 马盈盈, 等. 差分吸收大气CO2激光雷达的大气压力增宽修正算法[J]. 光学学报, 2012, 32(11): 1101003.

    Ma Xin, Lin Hong, Ma Yingying, et al.. Atmospheric pressure broadening correction algorithm of differential absorption atmospheric CO2 lidar[J]. Acta Optica Sinica, 2012, 32(11): 1101003.

[7] 李俊, 龚威, 毛飞跃, 等. 探测武汉上空大气气溶胶的双视场激光雷达[J]. 光学学报, 2013, 33(12): 1201001.

    Li Jun, Gong Wei, Mao Feiyue, et al.. Dual field of view lidar for observing atmospheric aerosols over Wuhan[J]. Acta Optica Sinica, 2013, 33(12): 1201001.

[8] Ge Han, Wei Gong, Hong Lin, et al.. On-line wavelength calibration of pulsed laser for CO2 DIAL sensing[J]. Applied Physics B, 2014, 117(4): 1041-1053.

[9] 曹念文, 颜鹏. 基于激光雷达探测的气溶胶分类方法研究[J]. 光学学报, 2014, 34(11): 1101003.

    Cao Nianwen, Yan Peng. Aerosol classifications method by lidar measurements[J]. Acta Optica Sinica, 2014, 34(11): 1101003.

[10] 王然, 高春清. 1.6 μm 波段单频激光器技术研究进展[J]. 激光与光电子学进展, 2013, 50(8): 080006.

    Wang Ran, Gao Chunqing. Progress of 1.6 μm region single-frequency lasers[J]. Laser & Optoelectronics Progress, 2013, 50(8): 080006.

[11] E M Georgieva, W S Heaps, Emily L Wilson. Differential radiometers using Fabry-Perot interferometric technique for remote sensing of greenhouse gases[J]. IEEE Transactions on Geoscienceand Remote sensing, 2008, 46(10): 3115-3122.

[12] W S Heaps. Broadband lidar technique for precision CO2 measurement[C]. SPIE, 2008, 7111(711102): 1-9.

[13] 郭良, 谌鸿伟, 王泽锋, 等. 被动双包层光纤中包层光产生实验研究[J]. 激光与光电子学进展, 2014, 51(2): 020602.

    Guo Liang, Chen Hongwei, Wang Zefeng, et al.. Experimental study on the generation of cladding light in passive doubleclad fiber[J]. Laser & Optoelectronics Progress, 2014, 51(2): 020602.

[14] 程杰, 傅焰峰, 龚威. 用于CO2探测的高功率1572 nm 可调谐光源[J]. 激光技术, 2012, 36(4): 463-466.

    Cheng Jie, Fu Yanfeng, Gong Wei. 1572 nm high power tunable laser source for atmospheric CO2 measurement[J]. Laser Technology, 2012, 36(4): 463-466.

[15] 秦风杰, 谭中伟, 宁提纲. 光源带宽对基于光纤色散的光学相关器影响的研究[J]. 光学学报, 2013, 33(10): 1006004.

    Qin Fengjie, Tan Zhongwei, Ning Tigang. Research of the influence of bandwidth of light source on the optical correlator based on fiber dispersion[J]. Acta Optica Sinica, 2013, 33(10): 1006004.

林宏, 周传璘, 赵娜, 黄攀立. 基于宽谱大气CO2浓度探测的红外激光波长选择[J]. 激光与光电子学进展, 2015, 52(12): 120102. Lin Hong, Zhou Chuanlin, Zhao Na, Huang Panli. Wavelength Choice for Infrared Laser Based on Atmospheric CO2 Concentration Wide Spectrum Measurement[J]. Laser & Optoelectronics Progress, 2015, 52(12): 120102.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!