激光与光电子学进展, 2015, 52 (8): 082701, 网络出版: 2015-07-23   

腔量子电动力学中运动原子量子关联的动力学

Quantum Correlation Dynamics of Motive Atoms in Cavity Quantum Electrodynamics
作者单位
1 曲阜师范大学物理工程学院, 山东 曲阜 273165
2 聊城大学东昌学院, 山东 聊城 252000
摘要
利用数值分析的方法,研究了两运动原子依次通过微腔时两原子的量子关联,讨论了两原子的初始态,腔场光子数及原子的运动对纠缠和量子失协的影响以及纠缠与量子失协的比较。结果表明:初始态可以改变纠缠和量子失谐的演化; 腔场光子数的增加,可以使纠缠和量子失谐由周期性变化到非周期性变化,光子数不为零时,纠缠出现猝死现象,量子失谐保持非零;原子的运动可以使纠缠和量子失谐由非周期性演化变为周期性演化,使周期变短,并且发现原子运动的场模结构参数的增大可以提高纠缠和量子失谐的大小。在某些情况下,纠缠和量子失谐的演化规律具有一致性。
Abstract
Dynamics of quantum correlation of two atoms going through a cavity one after another are investigated by means of numerical analysis method. Effects of the initial atom states and the Fock state and the atomic movement on entanglement and quantum discord and a comparison of entanglement and quantum discord are analyzed. The results show that the initial atom state can change the time evolution of entanglement and quantum discord, the increase of Fock state number can make the entanglement and quantum discord from periodic evolution to nonperiodic evolution. The nozero of the number of Fock state can lead to entanglement sudden death and nonzero quantum discord. Atomic movement can make the entanglement and quantum discord from nonperiodic evolution to periodic evolution, and can make the period shorter and it is found that the increase of the field model structure parameter can increase the entanglement and quantum discord. In some cases, the evolution law of entanglement and quantum discord are nearly same.
参考文献

[1] A Einstein, B Podolsky, N Rosen. Can quantum-mechanical description of physical reality be considered complete [J]. Phys Rev, 1935, 47(10): 0777-0780.

[2] E Schrodinger. Die gegenwartige situation in der quantenmechanik[J]. Naturwissenschaften, 1935, 23(49): 823-828.

[3] C Bennett H, G Brassard, C Crepeau, et al.. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels[J]. Phys Rev Lett, 1993, 70(13): 1895-1899.

[4] M Zukowshi, A Zeilinger, M A Horne, et al..“Event-ready-detectors”Bell experiment via entanglement swapping[J]. Phys Rev Lett, 1993, 71(26): 4287-4290.

[5] C H Bennett, S J Wiesner. Communication via one-particle and two-particle operators on Einstein-Podolsky-Rosen states[J]. Phys Rev Lett, 1992, 69(20): 2881-2884.

[6] A K Ekert. Quantum cryptography based on Bell′s theorem[J]. Phys Rev Lett, 1991, 67(6): 661-663.

[7] Adriano Barenco, David Deutsch, Artur Ekert, et al.. Conditional quantum dynamics and logic gates[J]. Phys Rev Lett, 1995, 74(20): 4083-4086.

[8] 闫智辉, 贾晓军, 苏晓龙, 等. 连续变量多色纠缠态光场[J]. 激光与光电子学进展, 2013, 50(8): 080007.

    Yan Zhihui, Jia Xiaojun, Su Xiaolong, et al.. Continuous variable multi-color entangled optical fields[J]. Laser & Optoelectronics Progress, 2013, 50(8): 080007.

[9] H Ollivier, W H Zurek. Quantum discord: a measure of the quantumness of correlations[J]. Phys Rev Lett, 2002, 88(1): 017901.

[10] L Henderson, V Vedral. Classical quantum and total correlations[J]. J Phys A, 2001, 34(35): 6899-6905.

[11] M Ali, A R P Rau, G Alber. Quantum discord for two-qubit X states[J]. Phys Rev A, 2010, 81(4): 042105.

[12] S Luo. Quantum discord for two-qubit systems[J]. Phys Rev A, 2008, 77(4): 042303.

[13] J S Xu, X Y Xu, C F Li, et al.. Experimental investigation of classical and quantum correlations under decoherence[J]. Nat Commun, 2010, 1(7): 1-6.

[14] Y X Chen, S W Li. Quantum correlations in topological quantum phase transitions[J]. Phys Rev A, 2010, 81(3): 032120.

[15] R C Ge, Gong M, C F Li, et al.. Quantum correlation and classical correlation dynamics in the spin-boson model[J]. Phys Rev A, 2010, 81(6): 064103.

[16] 王飞, 肖明. 非绝热消除条件下输出边频量子关联[J]. 光学学报, 2012, 32(12): 1227001.

    Wang Fei, Xiao Ming. Output sideband quantum correlations with nonadiabatic elimination[J]. Acta Optica Sinica, 2012, 32(12): 1227001.

[17] J S Xu, C F Li, C J Zhang, et al.. Experimental investigation of the non-Markovian dynamics of classical and quantum correlations[J]. Phys Rev A, 2010, 82(4): 042328.

[18] J Maziero, T Werlang, F F Fanchini, et al.. System-reservoir dynamics of quantum and classical correlations[J]. Phys Rev A, 2010, 81(2): 022116.

[19] 杜少将, 夏云杰, 满忠晓, 等. 基于弱测量操作下的量子关联动力学及关联转移[J]. 光学学报, 2013, 33(11): 1127001.

    Du Shaojiang, Xia Yunjie, Man Zhongxiao, et al.. Quantum correlation dynamics and transfer based on weak measurement [J]. Acta Optica Sinica, 2013, 33(11): 1127001.

[20] 郑小兰, 张斌. 热库诱导的两比特量子纠缠与量子关联[J]. 光学学报, 2014, 34(1): 0127002.

    Zheng Xiaolan, Zhang Bin. Quantum entanglement and correlations between two qubits induced by a heat bath[J]. Acta Optica Sinica, 2014, 34(1), 0127002.

[21] 贺志, 李龙武. 两二能级原子在共同环境下的量子关联动力学[J]. 物理学报, 2013, 62(18), 180301.

    He Zhi, Li Longwu. Quantum correlation dynamics of two-level atoms in common environment[J]. Acta Physica Sinica, 2013, 62(18): 180301.

[22] Xuequn Yan, Boying Zhang. Collapse-revival of quantum discord and entanglement[J]. Annals of Physics, 2014, 349: 350-356.

[23] R R Schlicher. Jaynes-Cummings model with atomic motion[J]. Optics Communications, 1989, 70(2): 97-102.

[24] W K Wootters. Entanglement of formation of an arbitrary state of two qubits[J]. Phys Rev Lett, 1998, 80(10): 2245-2248.

[25] T Yu, J H Eberly. Evolution from entanglement to decoherence of bipartite mixed“X”states[J]. Quantum Information & Computation, 2007, 7(5-6): 459-468.

[26] E Hagley, X Maitre, G Nogues, et al.. Generation of Einstein-Podolsky-Rosen pairs of atoms[J]. Phys Rev Lett, 1997, 79(1): 1-5.

[27] J M Raimond, M Brune, S Haroche. Manipulating quantum entanglement with atoms and photons in a cavity[J]. Rev Mod Phys, 2001, 73(3): 565-582.

高德营, 夏云杰. 腔量子电动力学中运动原子量子关联的动力学[J]. 激光与光电子学进展, 2015, 52(8): 082701. Gao Deying, Xia Yunjie. Quantum Correlation Dynamics of Motive Atoms in Cavity Quantum Electrodynamics[J]. Laser & Optoelectronics Progress, 2015, 52(8): 082701.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!