激光与光电子学进展, 2016, 53 (7): 072301, 网络出版: 2016-07-08   

基于可变光脉冲诱导荧光的浮游植物光合作用参数测量系统设计 下载: 514次

Design of Phytoplankton Photosynthetic Parameter Measurement System Based on Variable Pulse Induced Fluorescence
作者单位
1 合肥学院电子信息与电气工程系, 安徽 合肥 230601
2 中国科学院安徽光学精密机械研究所国家环境保护环境光学监测技术重点实验室, 安徽 合肥 230031
摘要
浮游植物光合作用参数的快速测量对水华和赤潮灾害预警及水体生态研究具有重要作用。针对高速重复脉冲(FRR)光合作用参数测量技术中由窄脉冲光源激发引起的高数据采样率问题,采用单光脉冲实现单周转模式激发,应用脉冲积分法实现弛豫模式微弱光脉冲信号检测,设计了基于可变光脉冲诱导荧光的浮游植物光合作用参数测量系统,将数据采样率需求由10 MS/s以上降低至1 MS/s。实现了浮游植物光系统II(PSII)功能吸收截面、PSII最大光化学量子产率以及QA-(还原后的初级电子受体)再氧化时间常数的快速测量。实验表明,测量结果的相对标准偏差均小于3%。
Abstract
Rapid measurement of phytoplankton photosynthetic parameters is important for bloom and red tide prediction as well as water ecological research. In order to solve the problem of high data sampling rate caused by narrow pulse light source when the fast repetition rate (FRR) method is applied, a phytoplankton photosynthetic parameter measurement system based on variable pulse induced fluorescence is designed. The designed system utilizes a single pulse to realize the single turnover excitation mode, and employs pulse integration to implement weak light pulse signal detection in the relaxation mode. The data sampling rate can be reduced from higher than 10 MS/s to 1 MS/s. The functional absorption cross section of photosystem II (PSII), maximum quantum yield of photochemistry in PSII, and QA- (reduced primary electron acceptor) reoxidation time constant, can be measured rapidly. The relative standard deviation of the three parameters is less than 3%.
参考文献

[1] Dubinsky Z. Photosynthesis[M]. Croatia: InTech, 2013.

[2] Antonowicz J P, Mudryk Z, Zdanowicz M. A relationship between accumulation of heavy metals and microbiological parameters in the surface microlayer and subsurface water of a coastal Baltic lake[J]. Hydrobiologia, 2015, 762(1): 65-80.

[3] 殷高方, 赵南京, 胡丽, 等. 基于色素特征荧光光谱的浮游植物分类测量方法[J]. 光学学报, 2014, 34(9): 0930005.

    Yin Gaofang, Zhao Nanjing, Hu Li, et al.. Classified measurement of phytoplankton based on characteristic fluorescence of photosynthetic pigments[J]. Acta Optica Sinica, 2014, 34(9): 0930005.

[4] 吴珍珍, 姚鹏, 苏荣国, 等. 基于交替三线性分解的浮游藻荧光识别分析技术研究[J]. 中国激光, 2015, 42(5): 0515003.

    Wu Zhenzhen, Yao Peng, Su Rongguo, et al.. Algae chemotaxonomy technology by fluorescence based on alternating trilinear decomposition analysis[J]. Chinese J Lasers, 2015, 42(5): 0515003.

[5] Barnes M K, Tilstone G H, Smyth T J, et al.. Absorption-based algorithm of primary production for total and size-fractionated phytoplankton in coastal waters[J]. Marine Ecology Progress Series, 2014, 504: 73-89.

[6] Yusuf M A, Kumar D, Rajwanshi R, et al.. Overexpression of γ-tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviates abiotic stress: Physiological and chlorophyll a fluorescence measurements[J]. Biochimica Biophysica Acta, 2010, 1797(8): 1428-1438.

[7] 裴绍峰, Laws E A, 叶思源, 等. 利用14C标记技术测定海洋初级生产力的绉议[J]. 海洋科学, 2014, 38(12): 149-156.

    Pei Shaofeng, Laws E A, Ye Siyuan, et al.. Study on the discrepancy in applying 14C tracer technique to measure marine primary productivity[J]. Marine Sciences, 2014, 38(12): 149-156.

[8] Suggett D J. Chlorophyll a fluorescence in aquatic sciences: Methods and applications[M]. Dordrecht: Springer, 2011.

[9] Schreiber U, Klughammer C, Kolbowski J. Assessment of wavelength-dependent parameters of photosynthetic electron transport with a new type of multi-color PAM chlorophyll fluorometer[J]. Photosynthesis Research, 2012, 113(1): 127-144.

[10] 张雯婷, 李鹏民. 瞬时与延迟叶绿素荧光及820 nm光反射动力学同步测量技术在光合作用研究中的应用[J]. 生物物理学报, 2015, 31(3): 221-229.

    Zhang Wenting, Li Pengmin. Application of simultaneous measurement of prompt and delayed chlorophyll fluorescence and the 820 nm reflection kinetics in photosynthesis study[J]. Acta Biophysica Sinica, 2015, 31(3): 221-229.

[11] Perron M C, Qiu B, Boucher N, et al.. Use of chlorophyll a fluorescence to detect the effect of microcystins on photosynthesis and photosystem II energy fluxes of green algae[J]. Toxicon, 2012, 59(5): 567-577.

[12] Mauzerall D. Light-induced fluorescence changes in Chlorella, and the primary photoreactions for the production of oxygen[J]. Proceedings of the National Academy of Sciences, 1972, 69(6): 1358-1362.

[13] Schreiber U. Detection of rapid induction kinetics with a new type of high-frequency modulated chlorophyll fluorometer[J]. Photosynthesis Research, 1986, 9(1): 261-272.

[14] Kolber Z, Falkowski P G. Use of active fluorescence to estimate phytoplankton photosynthesis in situ[J]. Limnology and Oceanography, 1993, 38(8): 1646-1665.

[15] 王俊生, 许文海, 黎坚, 等. 高灵敏延迟荧光探测植物光合速率检测系统[J]. 光电工程, 2007, 34(3): 118-122.

    Wang Junsheng, Xu Wenhai, Li Jian, et al.. Design of photosynthesis rate system based on high-sensitive delayed fluorescence detection[J]. Opto-Electronic Engineering, 2007, 34(3): 118-122.

[16] 刘晶. 浮游植物光合作用活性原位测量方法与系统研制[D]. 合肥: 中国科学技术大学, 2013.

    Liu Jing. Method of phytoplankton photosynthesis activity measurement in situ and system design[D]. Hefei: University of Science and Technology of China, 2013.

[17] Kolber Z, Falkowski P. Fast repetition rate (FRR) fluorometer and method for measuring fluorescence and photosynthetic parameters: US5426306[P]. 1995-06-20.

[18] Oxborough K, Moore C M, Suggett D J, et al.. Direct estimation of functional PSII reaction center concentration and PSII electron flux on a volume basis: A new approach to the analysis of fast repetition rate fluorometry (FRRf) data[J]. Limnology and Oceanography: Methods, 2012, 10(3): 142-154.

[19] Silsbe G M, Oxborough K, Suggett D J, et al.. Toward autonomous measurements of photosynthetic electron transport rates: An evaluation of active fluorescence-based measurements of photochemistry[J]. Limnology and Oceanography: Methods, 2015, 13(3): 138-155.

[20] Shi C Y, Zhang Y J, Yin G F, et al.. Measurement of algae PSII photosynthetic parameters using high-frequency excitation flashes[J]. Chinese Optics Letters, 2014, 12(8): 080101.

[21] Kolber Z S, Práil O, Falkowski P G. Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: Defining methodology and experimental protocols[J]. Biochimica Biophysica Acta, 1998, 1367(1-3): 88-106.

[22] Kolber Z S, Falkowski P G. Multiple protocol fluorometer and method: US6121053[P]. 2000-09-19.

[23] 石朝毅, 张玉钧, 殷高方, 等. 快速光脉冲藻类光合作用测量方法的激发条件研究[J]. 光子学报, 2015, 44(2): 0217002.

    Shi Chaoyi, Zhang Yujun, Yin Gaofang, et al.. Determining the optimal excitation condition of high-frequency flash method for algae photosynthetic parameters measurement[J]. Acta Photonica Sinica, 2015, 44(2): 0217002.

[24] 刘晶, 刘文清, 赵南京, 等. 浮游植物在不同光质和光强激发下的叶绿素荧光特性[J]. 光学学报, 2013, 33(9): 0930001.

    Liu Jing, Liu Wenqing, Zhao Nanjing, et al.. Phytoplankton chlorophyll fluorescence characteristics excited by various light qualities and intensities[J]. Acta Optica Sinica, 2013, 33(9): 0930001.

[25] 杨初, 金尚忠, 邵茂丰, 等. 玻璃基板COB封装的LED性能研究[J]. 激光与光电子学进展, 2015, 52(1): 012304.

    Yang Chu, Jin Shangzhong, Shao Maofeng, et al.. Research on LED performance of glass substrate with COB packaging[J]. Laser & Optoelectronics Progress, 2015, 52(1): 012304.

[26] 文静, 文玉梅, 李平, 等. 采用光激励和光检测的LED电特性测试方法[J]. 光电子·激光, 2011, 22(7): 1051-1056.

    Wen Jing, Wen Yumei, Li Ping, et al.. Test method for the electrical characteristics of LED based on photo excitation and photo detection[J]. Journal of Optoelectronics·Laser, 2011, 22(7): 1051-1056.

[27] 李嘉明. 高精度、宽带宽CMOS全差分运算放大器技术研究[D]. 成都: 电子科技大学, 2006.

    Li Jiaming. Study on high precision, wide bandwidth CMOS fully differential operational amplifier technology[D]. Chengdu: University of Electronic Science and Technology of China, 2006.

[28] Lakowicz J R. Principles of fluorescence spectroscopy (3rd edition)[M]. New York: Springer Science & Business Media, 2013.

[29] Graeme J. Photodiode amplifiers: Op amp solutions[M]. New York: McGraw-Hill, Inc., 1995.

石朝毅, 高先和, 殷高方, 周泽华, 卢军, 胡学友. 基于可变光脉冲诱导荧光的浮游植物光合作用参数测量系统设计[J]. 激光与光电子学进展, 2016, 53(7): 072301. Shi Chaoyi, Gao Xianhe, Yin Gaofang, Zhou Zehua, Lu Jun, Hu Xueyou. Design of Phytoplankton Photosynthetic Parameter Measurement System Based on Variable Pulse Induced Fluorescence[J]. Laser & Optoelectronics Progress, 2016, 53(7): 072301.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!