激光与光电子学进展, 2017, 54(3): 030001, 网络出版: 2017-02-01

二维平板光子晶体微腔与波导的耦合

Coupling of Two-Dimensional Slab Photonic Crystal Micro-Cavities and Waveguides
作者单位

1中国科学院物理研究所光物理重点实验室, 北京 100190

2中国科学院大学, 北京 100049

摘要
光子晶体是介质介电常数呈周期性排布的结构,具有光子带隙,处于光子带隙中的电磁波无法在其中传播。二维平板光子晶体是通过在衬底上刻蚀周期性排列的空气孔柱而形成的结构,由于其具有优良的控制光传播的特性而得到广泛的研究和应用。介绍了在二维平板光子晶体中引入缺陷形成的光子晶体微腔和波导的方法和性质。通过调整几何参数控制微腔与波导之间的耦合,实现基于二维平板光子晶体的全光开关、光存储、单光子源等光学器件并讨论其在量子光学网络中的应用。
Abstract
Photonic crystal is a structure with periodic dielectric constant and it has photonic band gap, in which the electromagnetic wave can not propagate in the structure. Two-dimensional slab photonic crystals can be fabricated by etching periodic air holes on a slab substrate, which has been investigated and applied extensively because of their good control of light propagation. Photonic crystal micro-cavities and waveguides can be achieved by introducing defects in the two-dimensional slab photonic crystal. The coupling of micro-cavities and waveguides can be controlled by adjusting geometric parameters, so as to realize the optical devices based on two-dimensional slab photonic crystals such as optical switching, optical storage and single photon source, etc. Properties of the micro-cavities and waveguides of two-dimensional slab photonic crystals are introduced, and their coupling control and potential applications in optical quantum information processing are discussed as well.
参考文献

[1] Krauss T F, Richard M, Brand S. Two-dimensional photonic-band gap structures operating at near-infrared wavelengths[J]. Nature, 1996, 383(6602): 699-702.

[2] Zeng L, Yi Y, Hong C, et al. Efficiency enhancement in Si solar cells by textured photonic crystal back reflector[J]. Applied Physics Letters, 2006, 89(11): 111111.

[3] Altug H, Englund D, VukoviJ. Ultrafast photonic crystal nanocavity laser[J]. Nature Physics, 2006, 2(7): 484-488.

[4] Oulton R, Jones B D, Lam S, et al. Polarized quantum dot emission from photonic crystal nanocavities studied under mode resonant enhanced excitation[J]. Optics Express, 2007, 15(25): 17221-17230.

[5] Akahane Y, Asano T, Song B S, et al. High-Q photonic nanocavity in a two-dimensional photonic crystal[J]. Nature, 2003, 425(6961): 944-947.

[6] Yoshie T, Scherer A, Hendrickson J, et al. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity[J]. Nature, 2004, 432(7014): 200-203.

[7] Hill M T, Dorren H J S, De Vries T, et al. A fast low-power optical memory based on coupled micro-ring lasers[J]. nature, 2004, 432(7014): 206-209.

[8] Zhukovsky S V, Chigrin D N, Lavrinenko A V, et al. Switchable lasing in multimode microcavities[J]. Physical Review Letters, 2007, 99(7): 073902.

[9] Ishii S, Baba T. Bistable lasing in twin microdisk photonic molecules[J]. Applied Physics Letters, 2005, 87(18): 181102.

[10] Zhang Y, Zhang Y, Li B. Optical switches and logic gates based on self-collimated beams in two-dimensional photonic crystals[J]. Optics Express, 2007, 15(15): 9287-9292.

[11] Lee M R, Fauchet P M. Two-dimensional silicon photonic crystal based biosensing platform for protein detection[J]. Optics Express, 2007, 15(8): 4530-4535.

[12] Carter S G, Sweeney T M, Kim M, et al. Quantum control of a spin qubit coupled to a photonic crystal cavity[J]. Nature Photonics, 2013, 7(4): 329-334.

[13] Joannopoulos J D, Johnson S G, Winn J N, et al. Photonic crystals: molding the flow of light[M]. Princeton: Princeton University Press, 2011.

[14] Purcel E M. Spontaneous emission probabilities at radio frequencies[J]. Physical Review, 1946, 340: 839.

[15] Tandaechanurat A, Iwamoto S, Nomura M, et al. Increase of Q-factor in photonic crystal H1-defect nanocavities after closing of photonic bandgap with optimal slab thickness[J]. Optics Express, 2008, 16(1): 448-455.

[16] Song B S, Noda S, Asano T, et al. Ultra-high-Q photonic double-heterostructure nanocavity[J]. Nature Materials, 2005, 4(3): 207-210.

[17] Hu J X, Fang Y T. Self-trapped band and semi-opening movable cavity[J]. IEEE Journal of Quantum Electronics, 2016, 52(7): 1-7.

[18] Mekis A, Chen J C, Kurland I, et al. High transmission through sharp bends in photonic crystal waveguides[J]. Physical Review Letters, 1996, 77(18): 3787-3790.

[19] Vignolini S, Riboli F, Intonti F, et al. Mode hybridization in photonic crystal molecules[J]. Applied Physics Letters, 2010, 97(6): 063101.

[20] Caselli N, Intonti F, Bianchi C, et al. Post-fabrication control of evanescent tunnelling in photonic crystal molecules[J]. Applied Physics Letters, 2012, 101(21): 211108.

[21] Doty M F, Climente J I, Korkusinski M, et al. Antibonding ground states in InAs quantum-dot molecules[J]. Physical Review Letters, 2009, 102(4): 047401.

[22] Caselli N, Intonti F, Riboli F, et al. Antibonding ground state in photonic crystal molecules[J]. Physical Review B, 2012, 86(3): 035133.

[23] Atlasov K A, Karlsson K F, Rudra A, et al. Wavelength and loss splitting in directly coupled photonic-crystal defect microcavities[J]. Optics Express, 2008, 16(20): 16255-16264.

[24] Combrié S, Lehoucq G, Junay A, et al. All-optical signal processing at 10 GHz using a photonic crystal molecule[J]. Applied Physics Letters, 2013, 103(19): 193510.

[25] Bose R, Cai T, Choudhury K R, et al. All-optical coherent control of vacuum Rabi oscillations[J]. Nature Photonics, 2014, 8(11): 858-864.

[26] Chalcraft A R A, Lam S, Jones B D, et al. Mode structure of coupled L3 photonic crystal cavities[J]. Optics Express, 2011, 19(6): 5670-5675.

[27] Brossard F S F, Reid B P L, Chan C C S, et al. Confocal microphotoluminescence mapping of coupled and detuned states in photonic molecules[J]. Optics Express, 2013, 21(14): 16934-16945.

[28] Intonti F, Vignolini S, Türck V, et al. Rewritable photonic circuits[J]. Applied Physics Letters, 2006, 89(21): 211117.

[29] Vignolini S, Riboli F, Intonti F, et al. Local nanofluidic light sources in silicon photonic crystal microcavities[J]. Physical Review E, 2008, 78(4): 045603.

[30] Intonti F, Vignolini S, Riboli F, et al. Tuning of photonic crystal cavities by controlled removal of locally infiltrated water[J]. Applied Physics Letters, 2009, 95(17): 173112.

[31] Lee H S, Kiravittaya S, Kumar S, et al. Local tuning of photonic crystal nanocavity modes by laser-assisted oxidation[J]. Applied Physics Letters, 2009, 95(19): 191109.

[32] Brunstein M, Karle T J, Sagnes I, et al. Radiation patterns from coupled photonic crystal nanocavities[J]. Applied Physics Letters, 2011, 99(11): 111101.

[33] Majumdar A, Rundquist A, Bajcsy M, et al. Cavity quantum electrodynamics with a single quantum dot coupled to a photonic molecule[J]. Physical Review B, 2012, 86(4): 045315.

[34] Li J, Yu R, Ding C, et al. Optical-frequency-comb generation and entanglement with low-power optical input in a photonic molecule[J]. Physical Review A, 2014, 90(3): 033830.

[35] Liu S, Yu R, Li J, et al. Creation of quantum entanglement with two separate diamond nitrogen vacancy centers coupled to a photonic molecule[J]. Journal of Applied Physics, 2013, 114(24): 244306.

[36] Hamel P, Haddadi S, Raineri F, et al. Spontaneous mirror-symmetry breaking in coupled photonic-crystal nanolasers[J]. Nature Photonics, 2015, 9(5): 311-315.

[37] Uesugi T, Song B S, Asano T, et al. Investigation of optical nonlinearities in an ultra-high-Q Si nanocavity in a two-dimensional photonic crystal slab[J]. Optics Express, 2006, 14(1): 377-386.

[38] Yariv A, Xu Y, Lee R K, et al. Coupled-resonator optical waveguide: a proposal and analysis[J]. Optics Letters, 1999, 24(11): 711-713.

[39] Yanik M F, Fan S. Stopping light all optically[J]. Physical Review Letters, 2004, 92(8): 083901.

[40] O′Brien D, Settle M D, Karle T, et al. Coupled photonic crystal heterostructure nanocavities[J]. Optics Express, 2007, 15(3): 1228-1233.

[41] Dousse A, Suffczyński J, Beveratos A, et al. Ultrabright source of entangled photon pairs[J]. Nature, 2010, 466(7303): 217-220.

[42] Liew T C H, Savona V. Single photons from coupled quantum modes[J]. Physical Review Letters, 2010, 104(18): 183601.

[43] Bamba M, Imamolu A, Carusotto I, et al. Origin of strong photon antibunching in weakly nonlinear photonic molecules[J]. Physical Review A, 2011, 83(2): 021802.

[44] Bamba M, Ciuti C. Counter-polarized single-photon generation from the auxiliary cavity of a weakly nonlinear photonic molecule[J]. Applied Physics Letters, 2011, 99(17): 171111.

[45] Malhotra T, Ge R C, Dezfouli M K, et al. Quasinormal mode theory and design of on-chip single photon emitters in photonic crystal coupled-cavity waveguides[J]. Optics Express, 2016, 24(12): 13574-13583.

[46] Schwagmann A, Kalliakos S, Ellis D J P, et al. In-plane single-photon emission from a L3 cavity coupled to a photonic crystal waveguide[J]. Optics Express, 2012, 20(20): 28614-28624.

[47] Coles R J, Prtljaga N, Royall B, et al. Waveguide-coupled photonic crystal cavity for quantum dot spin readout[J]. Optics Express, 2014, 22(3): 2376-2385.

[48] Nozaki K, Tanabe T, Shinya A, et al. Sub-femtojoule all-optical switching using a photonic-crystal nanocavity[J]. Nature Photonics, 2010, 4(7): 477-483.

[49] Liu C Y. Electro-optical resonant switching in two-dimensional side-coupled waveguide-cavity photonic crystal systems[J]. Physics Letters A, 2011, 375(44): 3895-3898.

[50] 方云团, 胡坚霞, 徐青松, 等. 基于单向边界模式与磁性微腔模式耦合的磁光存储系统[J]. 中国激光, 2015, 42(11): 1106001.

Fang Yuntuan, Hu Jianxia, Xu Qingsong, et al. Magneto-optical storage system based on the coupling of the one-way edge modes and micro cavity modes[J]. Chinese J Lasers, 2015, 42(11): 1106001.

[51] Descharmes N, Dharanipathy U P, Diao Z, et al. Observation of backaction and self-induced trapping in a planar hollow photonic crystal cavity[J]. Physical Review Letters, 2013, 110(12): 123601.

[52] Waks E, Vuckovic J. Coupled mode theory for photonic crystal cavity-waveguide interaction[J]. Optics Express, 2005, 13(13): 5064-5073.

[53] Faraon A, Waks E, Englund D, et al. Efficient photonic crystal cavity-waveguide couplers[J]. Applied Physics Letters, 2007, 90(7): 073102.

[54] Kim G H, Lee Y H, Shinya A, et al. Coupling of small, low-loss hexapole mode with photonic crystal slab waveguide mode[J]. Optics Express, 2004, 12(26): 6624-6631.

[55] Hughes S, Ramunno L, Young J F, et al. Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity[J]. Physical Review Letters, 2005, 94(3): 033903.

[56] Fano U. Effects of configuration interaction on intensities and phase shifts[J]. Physical Review, 1961, 124(6): 1866-1978.

[57] Ott C, Kaldun A, Raith P, et al. Lorentz meets Fano in spectral line shapes: a universal phase and its laser control[J]. Science, 2013, 340(6133): 716-720.

[58] Fan S H. Sharp asymmetric line shapes in side-coupled waveguide-cavity systems[J]. Applied Physics Letters, 2002, 80(6): 908-910.

[59] 赵彦辉. 二维平板光子晶体微腔及其与波导的耦合[D]. 北京: 中国科学院大学, 2016.

Zhao Yanhui. Integrating two-dimensional photonic crystal slab cavities with waveguides[D]. Beijing: University of Chinese Academy of Science, 2016.

[60] Zhao Y, Qian C, Qiu K, et al. Gain enhanced Fano resonance in a coupled photonic crystal cavity-waveguide structure[J]. Scientific Reports, 2016, 6.

[61] Zhao Y, Qian C, Qiu K, et al. Ultrafast optical switching using photonic molecules in photonic crystal waveguides[J]. Optics Express, 2015, 23(7): 9211-9220.

[62] Nozaki K, Shinya A, Matsuo S, et al. Ultralow-energy and high-contrast all-optical switch involving fano resonance based on coupled photonic crystal nanocavities[J]. Optics Express, 2013, 21(10): 11877-11888.

[63] Mingaleev S F, Miroshnichenko A E, Kivshar Y S. Coupled-resonator-induced reflection in photonic-crystal waveguide structures[J]. Optics Express, 2008, 16(15): 11647-11659.

[64] Min K, Kim J E, Park H Y. Channel drop filters using resonant tunneling processes in two-dimensional triangular lattice photonic crystal slabs[J]. Optics Communications, 2004, 237(1-3): 59-63.

[65] Fan S, Villeneuve P R, Joannopoulos J D, et al. Channel drop filters in photonic crystals[J]. Optics Express, 1998, 3(1): 4-11.

[66] 周兴平, 疏 静, 卢斌杰, 等. 基于三角晶格光子晶体谐振腔的双通道解波分复用器[J]. 光学学报, 2012, 33(1): 123001.

Zhou Xingping, Shu Jing, Lu Binjie, et al. Two-wavelength division demultiplexer based on triangular lattice photonic crystal resonant cavity[J]. Acta Optica Sinica, 2012, 33(1): 123001.

[67] 高永锋, 周 明, 周 骏, 等. 光子晶体波导定向耦合功分器的设计[J]. 中国激光, 2011, 38(5): 0505003.

Gao Yongfeng, Zhou Ming, Zhou Jun, et al. Design of power splitter by directional coupling between photonic crystal waveguides[J]. Chinese J Lasers, 2011, 38(5): 0505003.

[68] Sato Y, Tanaka Y, Upham J, et al. Strong coupling between distant photonic nanocavities and its dynamic control[J]. Nature Photonics, 2012, 6(1): 56-61.

[69] Englund D, Faraon A, Zhang B, et al. Generation and transfer of single photons on a photonic crystal chip[J]. Optics Express, 2007, 15(9): 5550-5558.

[70] Santori C, Fattal D, VukoviJ, et al. Indistinguishable photons from a single-photon device[J]. Nature, 2002, 419(6907): 594-597.

00 11