激光与光电子学进展, 2018, 55 (9): 092802, 网络出版: 2018-09-08  

基于辐射度的地表二向反射因子模拟与敏感性分析 下载: 627次

Simulation and Sensibility Analysis of Earth Surface Bidirectional Reflectance Factor Based on Radiosity
作者单位
吉林大学地球探测科学与技术学院, 吉林 长春 130026
摘要
传统的固定成像传感器多用于分析地物自身生物化学参数改变而导致的光谱变化, 而用于研究二向反射特性的计算机模拟模型受构建场景时可视因子计算量过大的限制而无法完成多类型地物的模拟, 因此两者较少有联系。针对这些问题, 在采用简化辐射度模型RAPID的基础上, 模拟了长春市御花园地区的反射率, 分析了反射率对环境因素的敏感性。结果表明:传感器视场角对热点有较大影响, 太阳天顶角和天空光比例在可见光与近红外波段各方向均有较大影响。模拟环境因素对成像光谱的影响, 可为固定成像传感器反演地物的生物化学参数提供依据。
Abstract
Conventional fixed imaging sensors are mostly used to analyze the changes of spectrum resulting from changes in the biochemical parameters of the ground objects. However, the computer simulation model used to study the bidirectional reflectance characteristics can not complete the simulation of multiple types of ground objects because of the large amount of view factors that need to be calculated when constructing a scene. Therefore, there is less connection between them. To deal with these problems, based on the Radiosity Applicable to Porous Individual objects (RAPID), we simulate the reflectance of the Yuhuayuan area in Changchun City and analyze the sensitivity of the reflectance to the environment factors. The results show that the field of view of the sensor has a strong influence on hot spot. The solar zenith angle and sky light ratio have a strong influence on all directions of the visible and near-infrared bands. Simulating the influence of environmental factors on the imaging spectrum is a good way to provide the basis for inversion of the ground objects of the biochemical parameters of fixed imaging sensor.
参考文献

[1] Liang S L. Quantitative remote sensing of land surfaces[M]. Hoboken: Wiley-Interscience, 2004: 413-415.

[2] 李健, 陈圣波, 王羽飞, 等. 基于自定义投影网格的多角度多源遥感数据空间位置精确配准[J]. 光学学报, 2017, 37(5): 0528002.

    Li J, Chen S B, Wang Y F, et al. Accurate spatial co-registration of multi-angle multi-source remote sensing data based on self-defined projection grids[J]. Acta Optica Sinica, 2017, 37(5): 0528002.

[3] 敖珺, 刘静秋, 马春波. 利用遥感数据反演海水光信道特性[J]. 激光与光电子学进展, 2016, 53(12): 120102.

    Ao J, Liu J Q, Ma C B. Inversion of seawater optical communication channel characteristics based on remote sensing data[J]. Laser & Optoelectronics Progress, 2016, 53(12): 120102.

[4] 史璐, 王晶, 梅源. 基于MODIS遥感影像的直布罗陀海峡内波传播特性研究[J]. 激光与光电子学进展, 2018, 55(1): 012802.

    Shi L, Wang J, Mei Y. Propagation characteristics of internal waves in the Strait of Gibraltar based on MODIS remote sensing images[J]. Laser & Optoelectronics Progress, 2018, 55(1): 012802.

[5] 张海龙, 孙德勇, 李俊生, 等. 基于GF1-WFV和HJ-CCD数据的我国近海绿潮遥感监测算法研究[J]. 光学学报, 2016, 36(6): 0601004.

    Zhang H L, Sun D Y, Li J S, et al. Remote sensing algorithm for detecting green tide in China coastal waters based on GF1-WFV and HJ-CCD data[J]. Acta Optica Sinica, 2016, 36(6): 0601004.

[6] 赵敏, 周广胜. 中国森林生态系统的植物碳贮量及其影响因子分析[J]. 地理科学, 2004, 24(1): 50-54.

    Zhao M, Zhou G S. Carbon storage of forest vegetation and its relationship with climatic factors[J]. Scientia Geographica Sinica, 2004, 24(1): 50-54.

[7] 汪杰君, 杨杰, 李双, 等. 偏振二向反射分布函数测量误差分析[J]. 光学学报, 2016, 36(3): 0312004.

    Wang J J, Yang J, Li S, et al. Measurement error analysis of bidirectional reflectance distribution functions[J]. Acta Optica Sinica, 2016, 36(3): 0312004.

[8] 徐飞飞, 曾朝阳, 陈杭. 复杂地物背景下的车辆目标激光主动偏振成像研究[J]. 激光与光电子学进展, 2016, 53(5): 051103.

    Xu F F, Zeng C Y, Chen H. Research on active laser polarization imaging of vehicle targets under complicated background[J]. Laser & Optoelectronics Progress, 2016, 53(5): 051103.

[9] Li X W, Strahler A H, Woodcock C E. A hybrid geometric optical-radiative transfer approach for modeling albedo and directional reflectance of discontinuous canopies[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(2): 466-480.

[10] North P R J. Three-dimensional forest light interaction model using a Monte Carlo method[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(4): 946-956.

[11] Casa R, Jones H G. LAI retrieval from multiangular image classification and inversion of a ray tracing model[J]. Remote Sensing of Environment, 2005, 98(4): 414-428.

[12] Qin W H, Gerstl S A W, Deering D W, et al. Characterizing leaf geometry for grass and crop canopies from hotspot observations: a simulation study[J]. Remote Sensing of Environment, 2002, 80(1): 100-113.

[13] Qin W H, Gerstl S A W. 3-D scene modeling of semidesert vegetation cover and its radiation regime[J]. Remote Sensing of Environment, 2000, 74(1): 145-162.

[14] 孟凡晓. 基于真实场景的树木冠层BRF模拟与分析[D]. 长春: 吉林大学, 2017.

    Meng F X. Simulation and analysis of tree canopy BRF based on the real scene[D]. Changchun: Jilin University, 2017.

[15] Goel N S, Rozehnal I. A high-level language for L-systems and its applications[M]. Heidelberg: Springer Berlin, 1992: 231-251.

[16] 董书彤. 基于辐射度模型的冬小麦冠层二向反射特性模拟[D]. 长春: 东北师范大学, 2013.

    Dong S T. Bi-directional reflectance factor simulation of winter wheat based on radiosity model[D]. Changchun: Northeast Normal University, 2013.

[17] Huang H G, Qin W H, Liu Q H. RAPID: a radiosity applicable to porous individual objects for directional reflectance over complex vegetated scenes[J]. Remote Sensing of Environment, 2013, 132: 221-237.

[18] 李玉霞, 杨武年, 童玲, 等. 基于光谱指数法的植被含水量遥感定量监测及分析[J]. 光学学报, 2009, 29(5): 1403-1407.

    Li Y X, Yang W N, Tong L, et al. Remote sensing quantitative monitoring and analysis of fuel moisture content based on spectral index[J]. Acta Optica Sinica, 2009, 29(5): 1403-1407.

甄治钧, 陈圣波, 覃文汉, 李健, 孟凡晓, 于岩. 基于辐射度的地表二向反射因子模拟与敏感性分析[J]. 激光与光电子学进展, 2018, 55(9): 092802. Zhen Zhijun, Chen Shengbo, Qin Wenhan, Li Jian, Meng Fanxiao, Yu Yan. Simulation and Sensibility Analysis of Earth Surface Bidirectional Reflectance Factor Based on Radiosity[J]. Laser & Optoelectronics Progress, 2018, 55(9): 092802.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!