量子电子学报, 2019, 36 (2): 174, 网络出版: 2019-04-03   

基于量子纠缠交换的双重弱盲签名方案

A dual weak blind signature scheme based on quantum entanglement swapping
作者单位
1 湖南师范大学信息科学与工程学院, 湖南 长沙 410081
2 洞庭湖生态经济区建设与发展湖南省协同创新中心, 湖南 常德 415000
摘要
为了抵御弱盲签名的伪造攻击,基于量子纠缠交换原理提出了双重弱盲签名方案。此方案由发送者、 签名者和验证者三方经过初始化、消息盲化、双重盲签名和验证完成。发送者将消息盲化后送给签 名者,签名者用量子可控非门产生盲签名并执行Bell态测量,发送者用量子测量对原始消息再次签 名,验证者对两次签名分别进行验证,并去除盲化恢复原始消息。如果参与者对签名验证的结果有 争议,由可信的签名者对争议进行仲裁。分析表明当密钥满足偶数位恒为1时,该方法不仅能抵御外 部攻击,而且能有效防止发送者篡改,满足了弱盲签名的不可伪造性、不可否认性、盲性和可追踪 性等要求。所提方案在电子商务、电子货币等互联网交易中具有广泛的应用前景。
Abstract
In order to resist the forgery attack of weak blind signature, a double weak blind signature scheme is proposed based on the quantum entanglement swapping principle. The scheme is completed by initializing, message blindness, double blind signature and verification by the sender, signer and verifier. The sender sends message after the blind to the signer. The signer produces blind signature with quantum controlled Not gate and performs Bell state measurement. The sender performs signature on the original message again with quantum measurement. The verifier verifies the two signatures separately and removes the blind to restore the original message. If a participant disputes the results of signature verification, the dispute is arbitrated by a trusted signer. Analysis shows that when the even digit of the key is constant 1, the method can not only resist external attack, but also prevent the sender from tampering effectively. It satisfies the unforgeable, non-repudiation, blind and traceability requirements of weak blind signature. The proposed scheme has broad application prospect in electronic commerce, electronic currency and other internet transactions.
参考文献

[1] Donaldson R J, Collins R J, Kleczkowska K, et al. Experimental demonstration of kilometer-range quantum digital signatures [J]. Physical Review A, 2016, 93(1): 012329.

[2] Bennett C H, Wiesner S J. Communication via one-and two-particle operators on Einstein-Podolsky-Rosen states [J]. Physical Review Letters, 1992, 69(20): 2881.

[3] Gong L H, Song H C, He C S, et al. A continuous variable quantum deterministic key distribution based on two-mode squeezed states [J]. Physica Scripta, 2014, 89(89): 035101.

[4] Liu C J, Li Z H, Bai C M, et al. Quantum secret sharing scheme based on local distinguish ability of orthogonal seven-qudit entangled states [J]. International Journal of Theoretical Physics, 2017, 3: 1-15.

[5] Rfifi S. Exploiting a fock cavity field to enhance quantum secret sharing through a phase-damping noisy channel [J]. International Journal of Theoretical Physics, 2016, 55(10): 4553-4563.

[6] Gong L H, Liu Y, Zhou N R. Novel quantum virtual private network scheme for PON via quantum secure direct communication [J]. International Journal of Theoretical Physics, 2013, 52(9): 3260-3268.

[7] Zhang W, Ding D S, Sheng Y B, et al. Quantum secure direct communication with quantum memory [J]. Physical Review Letters, 2017, 118(22): 220501.

[8] Shor P W. Progress in quantum algorithms [J]. Quantum Information Processing, 2004, 3(1-5): 5-13.

[9] Zeng G, Keitel C H. Arbitrated quantum-signature scheme [J]. Physical Review A, 2002, 65(4): 042312.

[10] Du Chengwei, Shi Runhua, Zhong Hong, et al. Efficient quantum sequential multi-signature protocol [J]. Chinese Journal of Quantum Electronics(量子电子学报), 2016, 33(3): 329-337 (in Chinese).

[11] Wang Hui, Shi Runhua, Zhong Hong, et al. Quantum proxy blind signature based on W state [J]. Chinese Journal of Quantum Electronics(量子电子学报), 2016, 33(1): 35-42 (in Chinese).

[12] Cao H J, Yu Y F, Song Q, et al. A quantum proxy weak blind signature scheme based on controlled quantum teleportation [J]. International Journal of Theoretical Physics, 2015, 54(4): 1325-1333.

[13] Zhang K J, Jia H Y. Cryptanalysis of a quantum proxy weak blind signature scheme [J]. International Journal of Theoretical Physics, 2015, 54(2): 582-588.

[14] Yan L L, Chang Y, Zhang S B, et al. A quantum multi-proxy weak blind signature scheme based on entanglement swapping [J]. International Journal of Theoretical Physics, 2017, 5(2): 634-642.

[15] Xiao M, Li Z. Quantum Broadcasting Multiple Blind Signature with Constant Size [M]. Kluwer Academic Publishers, 2016: 1-14.

[16] Heidari S, Gheibi R, Houshmand M, et al. A robust blind quantum copyright protection method for colored images based on owner’s signature [J]. International Journal of Theoretical Physics, 2017: 1-17.

[17] Luo Y P, Tsai S L, Hwang T, et al. On "A new quantum blind signature with unlinkability" [J]. Quantum Information Prcessing, 2017, 1(4): 87.

[18] Pan J W, Bouwmeester D, Weinfurter H, et al. Experimental entanglement swapping: Entangling photons that never interacted [J]. Physical Review Letters, 1998, 80(18): 3891-3894.

娄小平, 唐文胜, 马华. 基于量子纠缠交换的双重弱盲签名方案[J]. 量子电子学报, 2019, 36(2): 174. LOU Xiaoping, TANG Wensheng, MA Hua. A dual weak blind signature scheme based on quantum entanglement swapping[J]. Chinese Journal of Quantum Electronics, 2019, 36(2): 174.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!