量子电子学报, 2019, 36 (6): 719, 网络出版: 2019-12-06   

四量子纠缠态的可选远程态制备

Optional remote state preparation of four-quantum entangled state
作者单位
内江师范学院数学与信息科学学院, 四川 内江 641199
摘要
提出了已知四量子纠缠态的一个远程态制备协议,其中有两个可能的接收者,发送方 可以在两个可能的接收者中选择其中的一个,并在选定的接收者处制备预期的量子态。发送者首先引入两个辅助粒子,执行两 个受控非门操作,然后对二粒子系统进行两个投影测量,其测量基是通过已知态的信息来选择的,并行使自己的特有选择权。 根据发送方的16种不同测量结果,协议有16 个部分。给出了方案的内在效率,以及与现有相应方案相比存在的优势。
Abstract
A remote state preparation protocol for a known four-quantum entangled state is proposed, in which there are two possible receivers, and the sender can choose one of the two possible receivers to prepare an intended quantum state at the chosen receiver. The sender first introduces two auxiliary quantum particles and performs two controlled non-gate operations. Then two projection measurements on two-particle systems are carried out, where the measurement bases are chosen by using the information of the known states. At last the sender exercises her option which is exclusively her own prerogative. According to sixteen different measurement results of the sender, the protocol consists of sixteen parts. The intrinsic efficiency of the scheme is given, and its comparative advantages are also pointed out by comparing with the existing corresponding schemes.
参考文献

[1] Bennett C H, Brassard G. Quantum cryptography: Public key distribution and coin tossing [J]. Theoretical Computer Science, 2014, 560: 7-11.

[2] Liu Z H, Chen H W. Cryptanalysis and improvement in controlled quantum dialogue using cluster states [J]. Quantum Information Processing, 2019, 18: 98-99.

[3] Bennett C H, Brassard G, Crepeau C, et al. Teleporting an unknown quantum state via classical and Einstein-Podolsky-Rosen channels [J]. Physical Review Letters, 1993, 70(13): 1895-1899.

[4] Peng J Y, Mo Z W. Several teleportation schemes of an arbitrary unknown multi-particle state via different quantum channels [J]. Chinese Physics B, 2013, 22(5): 160-167.

[5] Peng J Y, Bei M Q, Mo Z W. Deterministic multi-hop controlled teleportation of arbitrary single-qubit state [J]. International Journal of Theoretical Physics, 2017, 5(10): 3348-3358.

[6] Lo H K. Classical-communication cost in distributed quantum-information processing: A generalization of quantum-communication complexity [J]. Physical Review A, 2000, 62(1): 012313.

[7] Peng J Y, Bai M Q, Mo Z W. Bidirectional controlled joint remote state preparation [J]. Quantum Information Processing, 2015, 14(11): 4263-4278.

[8] Peng J Y, Luo M X, Mo Z W, et al. Flexible deterministic joint remote state preparation of some states [J]. International Journal of Quantum Information, 2013, 11(4): 1350044.

[9] Pati A K. Minimum classical bit for remote preparation and measurement of a qubit [J]. Physical Review A, 2001, 63: 014302.

[10] Peng J Y, Bai M Q, Mo Z W. Joint remote state preparation of arbitrary two-particle states via GHZ-type states [J]. Quantum Information Processing, 2013, 12(7): 2325-2342.

[11] Peng J Y, Bai M Q, Mo Z W. Joint remote state preparation of a four-dimensional quantum state [J]. Chinese Physics Letters, 2014, 31(1): 010301.

[12] Hillery M, Buzek V, Berthiaume A. Quantum secret sharing [J]. Physical Review A, 1990, 59(3): 1829-1834.

[13] Peng J Y, Mo Z W. Quantum sharing an unknown multi-particle state via POVM [J]. International Journal of Theoretical Physics, 2013, 52(2): 620-633.

[14] Peng J Y. Bei M G, Mo Z W. Bidirectional quantum states sharing [J]. International Journal of Theoretical Physics, 2016, 55(5): 2481-2489.

[15] Peng J Y, Bai M Q, Mo Z W. Remote information concentration via four-particle cluster state and by positive operator-value measurement [J]. International Journal of Modern Physics B, 2013, 27(18): 50091.

[16] Leung D W, Shor P W. Oblivious remote state preparation [J]. Physical Review Letters, 2003, 90(12): 127905.

[17] Zeng B, Zhang P. Remote-state preparation in higher dimension and the parallelizable manifold sn-1 [J]. Physical Review A, 2001, 65(2): 130-132.

[18] Kurucz Z, Adam P, Kis Z, et al. Continuous variable remote state preparation [J]. Physical Review A, 2005, 72(5): 052315.

[19] Xia Y, Song J, Song H S. Multiparty remote state preparation [J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2007, 40(18): 3719-3724.

[20] Wang Z Y. Controlled remote preparation of a two-qubit state via an asymmetric quantum channel [J]. Communications in Theoretical Physics, 2011, 55(2): 244-250.

[21] Briegel H J, Raussendorf R. Persistent entanglement in arrays of interacting particles [J]. Physical Review Letters, 2001, 8(5): 910-913.

[22] Dong P, Zhang G, Cao Z L. Generation and transfer of quantum entangled state via spin-parity measurements [J]. International Journal of Theoretical Physics, 2010, 49(7): 1641-1647.

[23] Tonchev V D. Error-correcting codes from graphs [J]. Discrete Mathematics, 2002, 257(2): 549-557.

[24] Walther P, Resch K J, Rudolph T, et al. Experimental one-way quantum computting [J]. Nature, 2005, 434(7030): 169-176.

[25] Muralidharan S, Panigrahi P K. Quantum information splitting using multi-partite cluster states [J]. Physical Review A, 2008, 78(6): 5175-5179.

[26] Nie Y Y, Li Y H, Liu J C, et al. Quantum information splitting of an arbitrary three-qubit state by using two four-qubit cluster states [J]. Quantum Information Processing, 2011, 10(3): 297-305.

[27] Lu C Y, Zhou X Q, Gühne O, et al. Experimental entanglement of six photons in graph states [J]. Nature Physics, 2007, 3(2): 91-95.

[28] Paul N, Menon J V, Karumanchi S, et al. Quantum tasks using six qubit cluster states [J]. Quantum Information Processing, 2009, 10(5): 619-632.

[29] Zhan Y B, Fu H, Li X W, et al. Deterministic remote preparation of a four-qubit cluster-type entangled state [J]. International Journal of Theoretical Physics, 2013, 52(8): 2615-2622.

[30] Zhao S Y, Fu H, Li X W, et al. Efficient and economic schemes for remotely preparing a four-qubit cluster-type entangled state [J]. International Journal of Theoretical Physics, 2014, 53(7): 2485-2491.

[31] Ma S Y, Chen W L, Qu Z G, et al. Controlled remote preparation of an arbitrary fou-qubit-state via partially entangled channel [J]. International Journal of Theoretical Physics, 2017, 5(3): 1653-1664.

[32] Choudhury B S, Samanta S. An optional remote state preparation protocol for a four-qubit entangled state [J]. Quantum Information Processing, 2019, 18(4): 118-123.

[33] Yuan H, Liu Y M, Zhang W, et al. Optimizing resource consumption, operation complexity and efficiency in quantum-state sharing [J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2008, 41(14): 145506.

彭家寅. 四量子纠缠态的可选远程态制备[J]. 量子电子学报, 2019, 36(6): 719. PENG Jiayin. Optional remote state preparation of four-quantum entangled state[J]. Chinese Journal of Quantum Electronics, 2019, 36(6): 719.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!