量子电子学报, 2020, 37 (2): 196, 网络出版: 2020-04-03   

量子噪声随机流密码中密钥扩展模块的研究

Research on key expansion module of quantum noise random stream cipher
作者单位
陆军工程大学通信工程学院, 江苏 南京 210007
摘要
密钥扩展是量子噪声随机流密码(QNRC)高效利用量子密钥分发(QKD)密钥的手段,通常使用 经典加密方法来进行密钥扩展。高级加密标准(AES)和Hash算法因其破译难度大,在QNRC实验中常用作密钥扩展。根据分组加密的工作模式, 合理设计了计数器(CTR)模式和密码分组链接(CBC)模式下的Hash扩展方案。并且对不同扩展方案下产生的运行密钥流进行了NIST随机性检测,测 试结果表明CTR和CBC模式下的AES和Hash扩展都能通过随机性检测。尤其是CTR模式下的Hash扩展,输入长度可以灵活控制,能较好地适应现代 高速光网络的不同需求。
Abstract
Key expansion is an efficient way for quantum noise random stream cipher (QNRC) to use quantum key distribution (QKD) keys. Generally, the classical encryption methods are often used for key expansion in QNRC experiments, such as advanced encryption standard (AES) and Hash algorithms, because of the difficulty of deciphering. According to the working mode of block cipher, the Hash expansion schemes of counter (CTR) mode and cipher block link (CBC) mode are reasonably designed. Moreover, NIST random test is implemented on the running key streams generated under different expansion schemes. The test results show that AES and Hash expansion schemes both in CTR and CBC modes can pass the test of randomicity. Especially for the Hash expansion in CTR mode, the input length of which can be flexibly controlled, so it can better adapt to different requirements of modern high-speed optical network.
参考文献

[1] Miao C H, Zhang C M, He D Y, et al. Field and long-term demonstration of a wide area quantum key distribution network [J]. Optics Express, 2014, 22(18): 21739-21756.

[2] Wang C, Song X T, Yin Z Q, et al. Phase-reference-free experiment of measurement-device-independent quantum key distribution [J]. Physical Review Letters, 2015, 115(16): 160502.

[3] Wang S, Yin Z Q, Chen W, et al. Experimental demonstration of a quantum key distribution without signal disturbance monitoring [J]. Nature Photonics, 2015, 9: 832-836.

[4] Ding Y Y, Chen H, Wang S, et al. Polarization variations in installed fibers and their influence on quantum key distribution systems [J]. Optics Express, 2017, 25(22): 27923-27936.

[5] Nakazawa M, Yoshida M, Hirooka T, et al. QAM quantum noise stream cipher transmission over 100 km with continuous variable quantum key distribution [J]. IEEE Journal of Quantum Electronics, 2017, 53(4): 1-16.

[6] Wu Min, Liao Changjun, Liu Songhao. Research on extending quantum key approach based on QKD systems [J]. Acta Sinica Quantum Optica (量子光学学报), 2005, 11(2): 69-73 (in Chinese).

[7] Jian Li, Lu Yuncan, Yang Chun, et al. Research on extending quantum key approach based on QKD [J]. Chinese Journal of Quantum Electronics (量子电子学报), 2008, 25(1): 65-70 (in Chinese).

[8] Donnet S, Thangaraj A, Bloch M, et al. Security of Y-00 under heterodyne measurement and fast correlation attack [J]. Physics Letters A, 2006, 35(6): 406-410.

[9] Shimizu T, Hirota O, Nagasako Y. Running key mapping in a quantum stream cipher by the Yuen 2000 protocol [J]. Physical Review A, 2008, 77(3): 1012-1015.

[10] Kanter G S, Reilly D, Smith N. Practical physical-layer encryption: The marriage of optical noise with traditional cryptography [J]. IEEE Communications Magazine, 2009, 47(11): 74-81.

[11] Lu Yuan, Huang Peng, Zhu Jun, et al. The practical security and performance analysis of the quantum data stream cipher system by the αη protocol [J]. Acta Physica Sinica, 2012, 61(8): 80301.

[12] Douglas R S. Cryptography: Theory and Practice (密码学原理与实践) [M]. 3rd edition, Trans. by Feng Dengguo, Beijing: Electronic Industry Press, 201(in Chinese).

[13] Jiao H S, Pu T, Zheng J L, et al. Physical-layer security analysis of a quantum-noise randomized cipher based on the wire-tap channel model [J]. Optics Express, 2017, 25(10): 10947-10960.

[14] NIST SP 800-22: Download documentation and software [OL]. https://csrc.nist.gov/projects/random-bit-generation/documentation-and-software.

[15] Zhang Yongqiang, Li Shunbo, Qu Shuai, et al. NIST randomness test method and application [J]. Computer Knowledge and Technology (电脑知识与技术), 2014, 2(3): 6064-60(in Chinese).

史海勤, 蒲涛, 郑吉林, 谭业腾, 陈毓锴. 量子噪声随机流密码中密钥扩展模块的研究[J]. 量子电子学报, 2020, 37(2): 196. SHI Haiqin, PU Tao, ZHENG Jilin, TAN Yeteng, CHEN Yukai. Research on key expansion module of quantum noise random stream cipher[J]. Chinese Journal of Quantum Electronics, 2020, 37(2): 196.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!