光电子快报(英文版), 2018, 14 (5): 363, Published Online: Apr. 16, 2019  

The impact of Al2O3 back interface layer on low-temperature growth of ultrathin Cu(In,Ga)Se2 solar cells

Author Affiliations
1 Tianjin Key Laboratory of Thin Film Devices and Technology, Institute of Photoelectronic Thin Film Devices and Technology, Nankai University, Tianjin 300071, China
2 Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
3 Davidson School of Chemical Engineering, Purdue University, West Lafayette IN47907, USA
Abstract
With reducing the absorber layer thickness and processing temperature, the recombination at the back interface is se-vere, which both can result in the decrease of open-circuit voltage and fill factor. In this paper, we prepare Al2O3 by atomic layer deposition (ALD), and investigate the effect of its thickness on the performance of Cu(In,Ga)Se2 (CIGS) solar cell. The device recombination activation energy (EA) is increased from 1.04 eV to 1.11 eV when the thickness of Al2O3 is varied from 0 nm to 1 nm, and the height of back barrier is decreased from 48.54 meV to 38.05 meV. An effi-ciency of 11.57 % is achieved with 0.88-μm-thick CIGS absorber layer.
References

[1] Solar Frontier Achieves World Record Thin-Film Solar Cell Efficiency of 22.9%, http://www.solar-frontier. com/eng/news/2017/1220_press.html.

[2] M. Gloeckler and J.R. Sites, J. Appl. Phys. 98, 103703 (2005).

[3] N. Amin, P. Chelvanathan, M.I. Hossain and K. Sopian, Energy Procedia. 15, 291(2012).

[4] P. Reinhard, F. Pianezzi, L. Kranz, S. Nishiwaki, A.Chirila, S. Buecheler and A.N. Tiwati, Prog. Photo-volt: Res. Appl. 23, 281 (2015).

[5] E. Jarzembowski, B. Fuhrmann, H. Leipner, W. Franzel and R. Scheer, Thin Solid Films 633, 61 (2017).

[6] E. Jarzembowski, F. Syrowatka, K. Kaufmann, W. Franzel, T. Holscher and R. Scheer, Appl. Phys. Lett. 107, 051601 (2015).

[7] J.H. Yoon, J.H. Kim, W.M. Kim, J.K. Park, Y.J. Baik, T.Y. Seong and J.H. Jeong, Prog. Photovolt: Res. Appl. 22, 90 (2014).

[8] R. Caballero, M. Nichterwitz, A. Steigert, A. Eicke, I. Lauermann, H.W. Schock and C.A. Kaufmann, Acta Mater. 63, 54 (2014).

[9] X.L. Zhu, Z. Zhou, Y.M. Wang, L. Zhang, A.M. Li and F.Q. Huang, Sol. Energy Mater. Sol. Cells 101, 57 (2012).

[10] J.H. Yoon, W.M. Kim, J.K. Park, Y.J. Baik, T.Y. Seong and J.H. Jeong, Prog. Photovolt: Res. Appl. 22, 69 (2014).

[11] P. Jackson, R. Wuerz, D. Hariskos, E. Lotter, W. Witte and M. Powalla, Phys. Status Solidi (RRL)-Rapid Res. Lett. 10, 583 (2016).

[12] J.H. Yoon, T.Y. Seong and J.H. Jeong, Prog. Photovolt: Res. Appl. 21, 58 (2013).

[13] K. Granath, M. Bodegard and L. Stolt. Huang, Sol. Energy Mater. Sol. Cells 60, 279 (2000).

[14] J. Joel, B. Vermang, J. Larsen, O.D. Gargand and M. Edoff, Phys. Status Solidi RRL 9, 288 (2015).

[15] B. Vermang, J.T. Watigen, V. Fjallstrom, F. Rostvall, M. Edoff, R. Kotipalli, F. Henry and D. Flandre, Prog. Photovolt: Res. Appl. 22, 1023 (2014).

[16] V. Nadenau, U. Rau, A. Jasenek and H.W. Schock, J. Appl. Phys. 87, 584 (2000).

[17] T. Mise, S. Tajima, T. Fukano, K. Higuchi, T. Wasgio, K. Jimbo and H. Katagiri, Prog. Photovolt: Res. Appl. 24, 1009 (2016).

[18] S.S. Hegedus and W.N. Shafarman, Prog. Photovolt: Res. Appl. 12, 155 (2004).

LIU Yang, LIU Wei, CHEN Meng-xin, SHI Si-han, HE Zhi-chao, GONG Jin-long, WANG Tuo, ZHOU Zhi-qiang, LIU Fang-fang, SUN Yun, XU Shu. The impact of Al2O3 back interface layer on low-temperature growth of ultrathin Cu(In,Ga)Se2 solar cells[J]. 光电子快报(英文版), 2018, 14(5): 363.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!