Photonic Sensors, 2019, 9 (1): 0153, Published Online: Mar. 25, 2019   

Fiber-Optic Raman Spectrum Sensor for Fast Diagnosis of Esophageal Cancer

Author Affiliations
1 Institute of Digestive Disease, Southwest Hospital, Army Medical University, Chongqing 40038, China
2 Fiber Optics Research Center, Key Laboratory of Optical Fiber Sensing & Communications (Ministry of Education), University of Electronic Science and Technology of China, Chengdu 611731, China
3 Zolix Instruments Co., Ltd., Beijing 101102, China
Abstract
A fiber-optic Raman spectrum sensor system is used for the fast diagnosis of esophageal cancer during clinical endoscopic examination. The system contains a 785 nm exciting laser, a Raman fiber-optic probe with 7 large core fibers and a focus lens, and a highly sensitive spectrum meter. The Raman spectrum of the tissue could be obtained within 1 second by using such a system. A signal baseline removal and denoising technology is used to improve the signal quality. A novel signal feature extraction method for differentiating the normal and esophageal cancer tissues is proposed, based on the differences in half-height width (HHW) in 1200 cm-1 to 1400 cm-1 frequency band and the ratios of the spectral integral energy between 1600 cm-1 - 1700 cm-1 and 1500 cm-1 - 1600 cm-1 band. It shows a high specificity and effectivity for the diagnosis of esophageal cancer.
References

[1] A. Jemal, R. Siegel, J. Q. Xu, and E. Ward, “Cancer statistics,” CA: A Cancer Journal for Clinicians, 2010, 60(5): 277-300.

[2] L. M. Brown, S. S. Devesa, and W. H. Chow, “Incidence of adenocarcinoma of the esophagus among white Americans by sex, stage, and age,” Journal of the National Cancer Institute, 2008, 100(16): 1184-1187.

[3] S. S. Devesa, W. J. Blot, and J. F. Fraumeni, “Changing patterns in the incidence of esophageal and gastric carcinoma in the United States,” Cancer, 1998, 83(10): 2049-2053.

[4] R. Krishnamoorthi, S. Singh, K. Ragunathan, D. A. Katzka, K. K. Wang, and P. G. Iyer, “Risk of recurrence of Barrett’s esophagus after successful endoscopic therapy,” Gastrointestinal Endoscopy, 2016, 83(6): 1090-1106.

[5] T. Oyama, A. Tomori, K. Hotta, S. Morita, K. Kominato, M. Tanaka, et al., “Endoscopic submucosal dissection of early esophageal cancer,” Clinical Gastroenterology and Hepatology, 2005, 3(7): S67-S70.

[6] M. Fujishiro, N. Yahagi, N. Kakushima, S. Kodashima, Y. Muraki, S. Ono, et al., “Endoscopic submucosal dissection of esophageal squamous cell neoplasms,” Clinical Gastroenterology and Hepatology, 2006, 4(6): 688-694.

[7] T. Ohki, M. Yamato, M. Ota, R. Takagi, D. Murakami, M. Kondo, et al., “Prevention of esophageal stricture after endoscopic submucosal dissection using tissue-engineered cell sheets,” Gastroenterology, 2012, 143(3): 582-588.

[8] T. Mizumoto, T. Hiyama, S. Ok, N. Yorita, K. Kuroki, M. Kurihara, et al., “Curative criteria after endoscopic resection for superficial esophageal squamous cell carcinomas,” Digestive Diseases and Sciences, 2018, 63(6): 1605-1612.

[9] C. Fleichmann and H. Messmann, “Endoscopic treatment of early esophageal squamous neoplasia,” Minerva Chirurgica, 2018, 73(4): 378-384.

[10] L. Sreedharan, G. C. Mayne, D. I. Watson, T. Bright, R. V. Lord, A. Ansar, et al., “MicroRNA profile in neosquamous esophageal mucosa following ablation of Barrett′s esophagus,” World Journal of Gastroenterology, 2017, 23(30): 5508- 5518.

[11] S. N. Choudhury, B. Konwar, S. Kaur, R. Doley, and B. Mondal, “Study on snake venom protein-antibody interaction by surface plasmon resonance spectroscopy,” Photonic Sensors, 2018, 8(3): 193-202.

[12] C. Xiao, Z. B. Chen, M. Z. Qing, D. X. Zhang, and L. Fan, “Composite sinusoidal nanograting with long-range SERS effect for label-free TNT detection,” Photonic Sensors, 2018, 8(3): 1-11.

[13] S. S. Cui, S. Zhang, and S. H. Yue, “Raman spectroscopy and imaging for cancer diagnosis,” Journal of Healthcare Engineering, 2018: 8619342-1-8619342-11.

[14] T. D. Wang, G. Triadafilopoulos, J. M. Crawford, L. R. Dixon, T. Bhandari, P. Sahbaie, et al., “Detection of endogenous biomolecules in Barrett’s esophagus by Fourier transform infrared spectroscopy,” Proceedings of the National Academy of Sciences, 2007, 104(40): 15864-15869.

[15] M. G. Shim, W. K. S L. Michel, N. E. Marcon, and B. C. Wilson, “In vivo near-infrared Raman spectroscopy: demonstration of feasibility during clinical gastrointestinal endoscopy,” Photochemistry and Photobiology, 2000, 72(1): 146-150.

[16] Z. W. Huang, S. K. Teh, W. Zheng, J. H. Mo, K. Lin, X. Z. Shao, et al., “Integrated Raman spectroscopy and trimodal wide-field imaging techniques for real-time in vivo tissue Raman measurements at endoscopy,” Optics Letters, 2009, 34(6): 758- 760.

[17] G. Shetty, C. Kendall, N. Shepherd, N. Stone, and H. Barr, “Raman spectroscopy: elucidation of biochemical changes in carcinogenesis of oesophagus,” British Journal of Cancer, 2006, 94: 1460–1464.

[18] M. S. Bergholt, W. Zheng, K. Y. Ho, M.Teh, K. G. Yeoh, J. B. Y. So, et al., “Fiber-optic confocal Raman spectroscopy for real-time in vivo diagnosis of dysplasia in Barrett’s esophagus,” Gastroenterology, 2014, 146(1): 27-32.

[19] Y. G. Hu, A. G. Shen, T. Jiang, Y. Ai, and J. M. Hu, “Classification of normal and malignant human gastric mucosa tissue with confocal Raman microspectroscopy and wavelet analysis,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2008, 69(2): 378-382.

Jianhua DAI, Xiu HE, Zhuoyue LI, Kang LI, Tingting YANG, Zengling RAN, Lijian YIN, Yao CHEN, Xiang ZOU, Dianchun FANG, Guiyong PENG. Fiber-Optic Raman Spectrum Sensor for Fast Diagnosis of Esophageal Cancer[J]. Photonic Sensors, 2019, 9(1): 0153.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!