Photonic Sensors, 2019, 9 (4): 337, Published Online: Dec. 5, 2019  

Modeling of Refractive Index Sensing Using Au Aperture Arrays on a Bragg Fiber Facet

Author Affiliations
1 Guangxi Key Laboratory of Precision Navigation Technology and Application, Guilin University of Electronic Technology, Guilin 541004, China
2 School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin 541004, China
Abstract
A finite-difference-time-domain (FDTD) approach is undertaken to investigate the extraordinary optical transmission (EOT) phenomenon of Au circular aperture arrays deposited on a Bragg fiber facet for refractive index (RI) sensing. Investigation shows that the choice of effective indices and modal loss of the Bragg fiber core modes will affect the sensitivity enhancement by using a mode analysis approach. The critical parameters of Bragg fiber including the middle dielectric RI, as well as its gap between dielectric layers, which affect the EOT and RI sensitivity for the sensor, are discussed and optimized. It is demonstrated that a better sensitivity of 156 ± 5 nm per refractive index unit (RIU) and an averaged figure of merit exceeding 3.5 RIU-1 are achieved when RI is 1.5 and gap is 0.02 μm in this structure.
References

[1] R. Karlsson, “SPR for molecular interaction analysis: a review of emerging application areas,” Journal of Molecular Recognition, 2004, 17(3): 151-161.

[2] J. Chen, Q. Zhang, C. Peng, C. J. Tang, X. Y. Shen, L. C. Deng, et al., “Optical cavity-enhanced localized surface plasmon resonance for high-quality sensing,” IEEE Photonics Technology Letters, 2018, 30(8): 728-731.

[3] J. Chen, W. F. Fan, T. Zhang, C. J. Tang, X. Y. Chen, J. J. Wu, et al., “Engineering the magnetic plasmon resonances of metamaterials for high-quality sensing,” Optics Express, 2017, 25(4): 3675-3681.

[4] J. Chen, J. Yuan, Q. Zhang, H. M. Ge, C. J. Tang, Y. Liu, et al., “Dielectric waveguide-enhanced localized surface plasmon resonance refractive index sensing,” Optical Materials Express, 2018, 8(2): 342-347.

[5] J. Chen, H. Nie, C. Peng, S. B. Qi, C. J. Tang, Y. Zhang, et al., “Enhancing the magnetic plasmon resonance of three-dimensional optical metamaterials via strong coupling for high-sensitivity sensing,” Journal of Lightwave Technology, 2018, 36(16): 3481-3485.

[6] T. W. Ebbesen, H. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature, 1998, 391(6668): 667-669.

[7] R. Gordon, D. Sinton, L. K. Kavanagh, and A. G. Brolo, “A new generation of sensors based on extraordinary optical transmission,” Accounts of Chemical Research, 2008, 41(8): 1049-1057.

[8] H. C. Zhou, X. Chen, P. Hou, and C. F. Li, “Giant bistable lateral shift owing to surface-plasmon excitation in Kretschmann configuration with a Kerr nonlinear dielectric,” Optics Letters, 2008, 33(11): 1249-1251.

[9] J. C. Hsu, S. W. Jeng, and Y. S. Sun, “Simulation and experiments for optimizing the sensitivity of curved D-type optical fiber sensor with a wide dynamic range,” Optics Communications, 2015, 341: 210–217.

[10] B. B. Shuai, L. Xia, Y. T. Zhang, and D. M. Liu, “A multi-core holey fiber based plasmonic sensor with large detection range and high linearity,” Optics Express, 2012, 20 (6): 5974-5986.

[11] P. P. Jia and J. Yang, “Integration of large-area metallic nanohole arrays with multimode optical fibers for surface plasmon resonance sensing,” Applied Physics Letters, 2013, 102(24): 243107-1-243107-3.

[12] P. P. Jia and Y. Jun, “A plasmonic optical fiber patterned by template transfer as a high-performance flexible nanoprobe for real-time biosensing,” Nanoscale, 2014, 6(15): 8836-8843.

[13] P. P. Jia, Z. L. Yang, J. Yang, and E. H. Heike, “Quasiperiodic nanohole arrays on optical fibers as plasmonic sensors: fabrication and sensitivity determination,” ACS Sensors, 2016, 1(8): 1078-1083.

[14] P. P. Jia, H. Jiang, J. Sabarinathan, and J. Yang, “Plasmonic nanohole array sensors fabricated by template transfer with improved optical performance,” Nanotechnology, 2013, 24(19): 195501.

[15] P. P. Jia and J. Yang, “Universal sensitivity of propagating surface plasmon resonance in nanostructure arrays,” Optics Express, 2015, 23(14): 18658-18664.

[16] E. M. Zhao, P. P. Jia, E. H. Heike, and H. Y. Li, “Localized surface plasmon resonance sensing structure based on gold nanohole array on beveled fiber edge,” Nanotechnology, 2017, 28(43): 435504.

[17] Lumerical Solutions Inc., FDTD Solutions User Manual, Vancouver, BC, Canada, 2011.

[18] C. Liu, L. Yang, X. L. Lu, and Q. Liu, “Mid-infrared surface plasmon resonance sensor based on photonic crystal fibers,” Optics Express, 2017, 25(13): 14227-14237.

[19] P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Physical Review B, 1972, 6(12): 4370-4379.

[20] A. A. Rifat, G. A. Mahdiraji, Y. M. Sua, R. Ahmed, Y. G. Shee, and F. R. M. Adikan, “Highly sensitive multi-core flat fiber surface plasmon resonance refractive index sensor,” Optics Express, 2016, 24(3): 2485-2495.

[21] M. H. Elshorbagy, C. Alexander, and A. Javier, “High-sensitivity integrated devices based on surface plasmon resonance for sensing applications,” Photonics Research, 2017, 5(6): 654-661.

Gongli XIAO, Hongyan YANG. Modeling of Refractive Index Sensing Using Au Aperture Arrays on a Bragg Fiber Facet[J]. Photonic Sensors, 2019, 9(4): 337.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!