中国激光, 2006, 33 (1): 57, 网络出版: 2006-04-20   

光子晶体光纤非线性光学研究新进展 下载: 3448次

Progress in Nonlinear Optics with Photonic Crystal Fibers
作者单位
天津大学精密仪器与光电子工程学院超快激光研究室 光电信息技术科学教育部重点实验室, 天津 300072
摘要
光子晶体光纤(PCF),又称为多孔光纤(HF)或微结构光纤(MF),是一种单一介质,并由波长量级的空气孔构成微结构包层的新型光纤。光子晶体光纤呈现出许多在传统光纤中难以实现的特性,从1996年世界上制造出第一根光子晶体光纤以来,它便受到了广泛关注并成为近年来光学与光电子学研究的一个热点。介绍了光子晶体光纤的制作工艺、工作原理、基本特性、目前的研究重点和进展情况,重点评述了光子晶体光纤非线性光学方面的研究及其潜在的应用。
Abstract
Photonic crystal fibers (PCFs), also called holey fibers (HFs) or microstructure fibers (MFs), are a new class of single-material optical fibers with wavelength-scale air holes running down the entire length. PCFs were first developed in 1996 and have subsequently been the focus of increasing scientific and technological interest, due to their unique and promising properties. The manufacturing, principles, basic properties and applications of PCFs are briefly described. A detailed review of the research on the nonlinear effects and the possible applications of these effects of PCFs are presented.
参考文献

[1] . Yablonovitch. Inhibited spontaneous emission in solid-state physics and electronics[J]. Phys. Rev. Lett., 1987, 58(20): 2059-2062.

[2] . John. Strong localization of photons in certain disordered dielectric superlattices[J]. Phys. Rev. Lett., 1987, 58(23): 2486-2489.

[3] . C. Knight. T. A. Birks, P. St. J. Russell et al.. All-silica single-mode optical fiber with photonic crystal cladding[J]. Opt. Lett., 1996, 21(19): 1547-1549.

[4] . A. Birks, J. C. Knight, P. St. J. Russell. Endlessly single-mode photonic crystal fiber[J]. Opt. Lett., 1997, 22(13): 961-963.

[5] . C. Knight, J. Broeng, T. A. Birks et al.. Photonic band gap guidance in optical fibers[J]. Science, 1998, 282(5393): 1476-1478.

[6] . C. Knight. Photonic crystal fibres[J]. Nature, 2003, 424(6950): 847-851.

[7] . Russell. Photonic crystal fibers[J]. Science, 2003, 299(5605): 358-362.

[8] . C. Knight, J. Arriaga, T. A. Birks et al.. Anomalous dispersion in photonic crystal fiber[J]. IEEE Photon. Technol. Lett., 2000, 12(7): 807-809.

[9] Yanfeng Li, Bowen Liu, Zihan Wang et al.. Influence on photonic crystal fiber dispersion of the size of air holes in different rings within the cladding [J]. Chin. Opt. Lett., 2004, 2(2):75~77

[10] . G. R. Broderick, T. M. Monro, P. J. Bennett et al.. Nonlinearity in holey optical fibers: measurement and future opportunities[J]. Opt. Lett., 1999, 24(20): 1395-1397.

[11] . P. Hansen, J. Broeng, S. E. B. Libori et al.. Highly birefringent index-guiding photonic crystal fibers[J]. IEEE Photon. Technol. Lett., 2001, 13(6): 588-590.

[12] . Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth et al.. Highly birefringent photonic crystal fibers[J]. Opt. Lett., 2000, 25(18): 1325-1327.

[13] Lou Shuqin, Wang Zhi, Ren Guobin et al.. Highly birefringent index guiding photonic crystal fibers [J]. Acta Optica Sinica, 2004, 24(10):1310~1315
娄淑琴,王智, 任国斌 等. 折射率导模高双折射光子晶体光纤[J]. 光学学报, 2004, 24(10):1310~1315

[14] D. A. Akimov, M. Schmitt, R. Maksimenka et al.. Supercontinuum generation in a multiple-submicron-core microstructure fiber: toward limiting waveguide enhancement of nonlinear-optical processes [J]. Appl. Phys. B, 2003, 77(2-3):299~305

[15] . L. Hu, C. Y. Wang, Y. F. Li et al.. Multiplex frequency conversion of unamplified 30-fs Ti:sapphire laser pulses by an array of waveguiding wires in a random-hole microstructure fiber[J]. Opt. Express, 2004, 12(25): 6129-6134.

[16] . Kaiser, H. W. Astle. Low-loss single-material fibers made from pure fused silica[J]. The Bell System Technical Journal, 1974, 53(6): 1021-1039.

[17] . Kumar, A. K. George, W. H. Reeves et al.. Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation[J]. Opt. Express, 2002, 10(25): 1520-1525.

[18] . A. van Eijkelenborg, M. C. J. Large, A. Argyros et al.. Microstructured polymer optical fibre[J]. Opt. Express, 2001, 9(7): 319-327.

[19] . Temelkuran, S. D. Hart, G. Benoit et al.. Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission[J]. Nature, 2002, 420(6916): 650-653.

[20] . Falkenstein, C. D. Merritt, B. L. Justus. Fused preforms for the fabrication of photonic crystal fibers[J]. Opt. Lett., 2004, 29(16): 1858-1860.

[21] . J. Wadsworth, R. M. Percival, G. Bouwmans et al.. Very high numerical aperture fibers[J]. IEEE Photon. Technol. Lett., 2004, 16(3): 843-845.

[22] . Argyros, I. M. Bassett, M. A. van Eijkelenborg et al.. Analysis of ring-structured Bragg fibres for single TE mode guidance[J]. Opt. Express, 2004, 12(12): 2688-2698.

[23] K. Tajima, J. Zhou, Ultra low loss and long length photonic crystal fiber [J]. IEICE Trans. Electron., 2005, E88C(5):870~875

[24] . Tajima, J. Zhou, K. Nakajima et al.. Ultralow loss and long length photonic crystal fiber[J]. J. Lightwave Technol., 2004, 22(1): 7-10.

[25] . Zhou, K. Tajima, K. Nakajima et al.. Progress on low loss photonic crystal fibers[J]. Opt. Fiber Technol., 2005, 11(2): 101-110.

[26] . J. Roberts, F. Couny, H. Sabert et al.. Ultimate low loss of hollow-core photonic crystal fibres[J]. Opt. Express, 2005, 13(1): 236-244.

[27] . M. Monro, P. J. Bennett, N. G. R. Broderick et al.. Holey fibers with random cladding distributions[J]. Opt. Lett., 2000, 25(4): 206-208.

[28] . Benabid, J. C. Knight, G. Antonopoulos et al.. Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber[J]. Science, 2002, 298(5592): 399-402.

[29] . Benabid, G. Bouwmans, J. C. Knight et al.. Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen[J]. Phys. Rev. Lett., 2004, 93(12): 123903-1.

[30] G. P. Agrawal. Nonlinear Fiber Optics [M]. Third Edition, ed. P. L. Kelley, I. P. Kaminow, G. P. Agrawal. Academic Press, 2001

[31] . G. Leon-Saval, T. A. Birks, W. J. Wadsworth et al.. Supercontinuum generation in submicron fibre waveguides[J]. Opt. Express, 2004, 12(13): 2864-2869.

[32] . Hundertmark, D. Kracht, D. Wandt et al.. Supercontinuum generation with 200 pJ laser pulses in an extruded SF6 fiber at 1560 nm[J]. Opt. Express, 2003, 11(24): 3196-3201.

[33] K. L. Corwin, N. R. Newbury, J. M. Dudley et al.. Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber [J]. Appl. Phys. B, 2003, 77(2-3):269~277

[34] . Apolonski, B. Povazay, A. Unterhuber et al.. Spectral shaping of supercontinuum in a cobweb photonic-crystal fiber with sub-20-fs pulses[J]. J. Opt. Soc. Am. B, 2002, 19(9): 2165-2170.

[35] . Coen, A. H. L. Chau, R. Leonhardt et al.. White-light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber[J]. Opt. Lett., 2001, 26(17): 1356-1358.

[36] . K. Ranka, R. S. Windeler, A. J. Stentz. Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm[J]. Opt. Lett., 2000, 25(1): 25-27.

[37] . J. Jones, S. A. Diddams, J. K. Ranka et al.. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis[J]. Science, 2000, 288(5466): 635-639.

[38] . A. Diddams, D. J. Jones, J. Ye et al.. Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb[J]. Phys. Rev. Lett., 2000, 84(22): 5102-5105.

[39] . Povazay, K. Bizheva, B. Hermann et al.. Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm[J]. Opt. Express, 2003, 11(17): 1980-1986.

[40] . M. Wang, Y. H. Zhao, J. S. Nelson et al.. Ultrahigh-resolution optical coherence tomography by broadband continuum generation from a photonic crystal fiber[J]. Opt. Lett., 2003, 28(3): 182-184.

[41] . Povazay, K. Bizheva, A. Unterhuber et al.. Submicrometer axial resolution optical coherence tomography[J]. Opt. Lett., 2002, 27(20): 1800-1802.

[42] . L. Gaeta. Nonlinear propagation and continuum generation in microstructured optical fibers[J]. Opt. Lett., 2002, 27(11): 924-926.

[43] . Herrmann, U. Griebner, N. Zhavoronkov et al.. Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers[J]. Phys. Rev. Lett., 2002, 88(17): 173901-1.

[44] . V. Husakou, J. Herrmann. Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers[J]. Phys. Rev. Lett., 2001, 87(20): 203901-1.

[45] . Gu, M. Kimmel, A. P. Shreenath et al.. Experimental studies of the coherence of microstructure-fiber supercontinuum[J]. Opt. Express, 2003, 11(21): 2697-2703.

[46] . L. Corwin, N. R. Newbury, J. M. Dudley et al.. Fundamental noise limitations to supercontinuum generation in microstructure fiber[J]. Phys. Rev. Lett., 2003, 90(11): 113904-1.

[47] . R. Newbury, B. R. Washburn, K. L. Corwin et al.. Noise amplification during supercontinuum generation in microstructure fiber[J]. Opt. Lett., 2003, 28(11): 944-946.

[48] . M. Dudley, S. Coen. Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers[J]. Opt. Lett., 2002, 27(13): 1180-1182.

[49] . M. Dudley, S. Coen. Fundamental limits to few-cycle pulse generation from compression of supercontinuum spectra generated in photonic crystal fiber[J]. Opt. Express, 2004, 12(11): 2423-2428.

[50] . K. Ranka, R. S. Windeler, A. J. Stentz. Optical properties of high-delta air-silica microstructure optical fibers[J]. Opt. Lett., 2000, 25(11): 796-798.

[51] . G. Omenetto, A. J. Taylor, M. D. Moores et al.. Simultaneous generation of spectrally distinct third harmonics in a photonic crystal fiber[J]. Opt. Lett., 2001, 26(15): 1158-1160.

[52] . G. Omenetto, A. Efimov, A. J. Taylor et al.. Polarization dependent harmonic generation in microstructured fibers[J]. Opt. Express, 2003, 11(1): 61-67.

[53] . Efimov, A. J. Taylor, F. G. Omenetto et al.. Phase-matched third harmonic generation in microstructured fibers[J]. Opt. Express, 2003, 11(20): 2567-2576.

[54] . Efimov, A. J. Taylor. Nonlinear generation of very high-order UV modes in microstructured fibers[J]. Opt. Express, 2003, 11(8): 910-918.

[55] . A. Akimov, E. E. Serebryannikov, A. M. Zheltikov et al.. Efficient anti-Stokes generation through phase-matched four-wave mixing in higher-order modes of a microstructure fiber[J]. Opt. Lett., 2003, 28(20): 1948-1950.

[56] . O. Konorov, E. E. Serebryannikov, P. Zhou et al.. Mode-controlled spectral transformation of femtosecond laser pulses in microstructure fibers[J]. Laser Phys. Lett., 2004, 1(4): 199-204.

[57] . Hu, C.-Y. Wang, Y. Li et al.. An anti-Stokes-shifted doublet of guided modes in a photonic-crystal fiber selectively generated and controlled with orthogonal polarizations of the pump field[J]. Appl. Phys. B, 2004, 79(7): 805-809.

[58] . . Polarization- and mode-dependent anti-Stokes emission in a birefringent microstructure fiber[J]. IEEE Photon. Technol. Lett., 2005, 17(3): 630-632.

[59] . L. Hu, C. Y. Wang, L. Chai et al.. Frequency-tunable anti-Stokes line emission by eigenmodes of a birefringent microstructure fiber[J]. Opt. Express, 2004, 12(9): 1932-1937.

[60] . L. Hu, C. Y. Wang, Y. F. Li et al.. Polarization-demultiplexed two-color frequency conversion of femtosecond pulses in birefringent photonic-crystal fibers[J]. Opt. Express, 2005, 13(16): 5947-5952.

[61] . E. Serebryannikov, M. L. Hu, Y. F. Li et al.. Enhanced soliton self-frequency shift of ultrashort light pulses[J]. JETP Lett., 2005, 81(10): 487-490.

[62] . J. Wadsworth, J. C. Knight, A. Ortigosa-Blanch et al.. Soliton effects in photonic crystal fibres at 850 nm[J]. Electron. Lett., 2000, 36(1): 53-55.

[63] . Liu, C. Xu, W. H. Knox et al.. Soliton self-frequency shift in a short tapered air-silica microstructure fiber[J]. Opt. Lett., 2001, 26(6): 358-360.

[64] . G. Ouzounov, F. R. Ahmad, D. Müller et al.. Generation of megawatt optical solitons in hollow-core photonic band-gap fibers[J]. Science, 2003, 301(5640): 1702-1704.

[65] . Q. Chang, T. B. Norris, H. G. Winful. Optimization of supercontinuum generation in photonic crystal fibers for pulse compression[J]. Opt. Lett., 2003, 28(7): 546-548.

[66] . Sudmeyer, F. Brunner, E. Innerhofer et al.. Nonlinear femtosecond pulse compression at high average power levels by use of a large-mode-area holey fiber[J]. Opt. Lett., 2003, 28(20): 1951-1953.

[67] . McConnell, E. Riis. Ultra-short pulse compression using photonic crystal fibre[J]. Appl. Phys. B, 2004, 78(5): 557-563.

[68] . Lako, J. Seres, P. Apai et al.. Pulse compression of nanojoule pulses in the visible using microstructure optical fiber and dispersion compensation[J]. Appl. Phys. B, 2003, 76(3): 267-275.

[69] . Adachi, K. Yamane, R. Morita et al.. Pulse compression using direct feedback of the spectral phase from photonic crystal fiber output without the need for the Taylor expansion method[J]. IEEE Photon. Technol. Lett., 2004, 16(8): 1951-1953.

[70] . Schenkel, R. Paschotta, U. Keller. Pulse compression with supercontinuum generation in microstructure fibers[J]. J. Opt. Soc. Am. B, 2005, 22(3): 687-693.

[71] N. Nishizawa, Y. Ito, T. Goto. Wavelength-tunable femtosecond soliton pulse generation for wavelengths of 0.78~1.0 μm using photonic crystal fibers and a ultrashort fiber laser [J]. Jpn. J. Appl. Phys., 2003, 42(Part 1, 2A):449~452

[72] . Gobel, A. Nimmerjahn, F. Helmchen. Distortion-free delivery of nanojoule femtosecond pulses from a Ti:sapphire laser through a hollow-core photonic crystal fiber[J]. Opt. Lett., 2004, 29(11): 1285-1287.

[73] . S. Abedin, F. Kubota. Widely tunable femtosecond soliton pulse generation at a 10-GHz repetition rate by use of the soliton self-frequency shift in photonic crystal fiber[J]. Opt. Lett., 2003, 28(19): 1760-1762.

[74] . J. Wadsworth, N. Joly, J. C. Knight et al.. Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres[J]. Opt. Express, 2004, 12(2): 299-309.

[75] . R. Folkenberg, M. D. Nielsen, N. A. Mortensen et al.. Polarization maintaining large mode area photonic crystal fiber[J]. Opt. Express, 2004, 12(5): 956-960.

[76] . A. Mortensen, M. D. Nielsen, J. R. Folkenberg et al.. Improved large-mode-area endlessly single-mode photonic crystal fibers[J]. Opt. Lett., 2003, 28(6): 393-395.

[77] . G. Ouzounov, K. D. Moll, M. A. Foster et al.. Delivery of nanojoule femtosecond pulses through large-core microstructured fibers[J]. Opt. Lett., 2002, 27(17): 1513-1515.

[78] . Poli, A. Cucinotta, M. Fuochi et al.. Characterization of microstructured optical fibers for wideband dispersion compensation[J]. J. Opt. Soc. Am. A, 2003, 20(10): 1958-1962.

[79] . A. Birks, D. Mogilevtsev, J. C. Knight et al.. Dispersion compensation using single-material fibers[J]. IEEE Photon. Technol. Lett., 1999, 11(6): 674-676.

[80] . . Dual-core photonic crystal fiber for dispersion compensation[J]. IEEE Photon. Technol. Lett., 2004, 16(6): 1516-1518.

[81] . L. Hu, C. Y. Wang, Y. F. Li et al.. Supercontinuum generation and transmission in a random distributed microstructure fiber[J]. Laser Phys., 2004, 14(5): 776-779.

[82] Hu Minglie, Wang Qingyue, Li Yanfeng et al.. Experimental analysis of the dependence factor during supercontinuum generation in photonic crystal fiber [J]. Acta Physica Sinica, 2004, 53(12):4243~4247
胡明列,王清月,栗岩锋 等. 飞秒激光在光子晶体光纤中产生超连续光谱机制的实验研究[J]. 物理学报, 2004, 53(12):4243~4247

[83] Hu Minglie, Wang Qingyue, Li Yanfeng et al.. Enhanced spectral broadening by femtosecond pulses in large-air-filling fraction microstructure fiber [J]. Chinese J. Lasers, 2004, 31(12):1429~1432
胡明列,王清月, 栗岩锋 等. 飞秒激光在大空气比微结构光纤中增强的非线性光谱展宽[J]. 中国激光, 2004, 31(12):1429~1432

[84] Hu Minglie, Wang Qingyue, Li Yanfeng et al.. Supercontinuum generation and transmission in a random distorted microstructure fiber [J]. Chinese J. Lasers, 2004, 31(5):567~569
胡明列,王清月,栗岩锋 等. 非均匀微结构光纤中超连续光的产生和传输[J]. 中国激光, 2004, 31(5):567~569

[85] . Benabid, J. C. Knight, P. S. Russell. Particle levitation and guidance in hollow-core photonic crystal fiber[J]. Opt. Express, 2002, 10(21): 1195-1203.

[86] . V. Mel’nikov, J. W. Haus, P. G. Kazansky. Vecksler-Macmillan phase stability for neutral atoms accelerated by a laser beam[J]. Opt. Commun., 2003, 220: 143-150.

[87] . Michaille, C. R. Bennett, D. M. Taylor et al.. Phase locking and supermode selection in multicore photonic crystal fiber lasers with a large doped area[J]. Opt. Lett., 2005, 30(13): 1668-1670.

[88] . Mafi, J. V. Moloney. Phase locking in a passive multicore photonic crystal fiber[J]. J. Opt. Soc. Am. B, 2004, 21(5): 897-902.

[89] . F. Zou, X. Y. Bao, L. A. Chen. Distributed Brillouin temperature sensing in photonic crystal fiber[J]. Smart Mater. Struct., 2005, 14(3): S8-S11.

[90] T. Nasilowski, T. Martynkien, G. Statkiewicz et al.. Temperature and pressure sensitivities of the highly birefringent photonic crystal fiber with core asymmetry [J]. Appl. Phys. B, 2005, 81(2-3):325~331

[91] . Pickrell, W. Peng, A. Wang. Random-hole optical fiber evanescent-wave gas sensing[J]. Opt. Lett., 2004, 29(13): 1476-1478.

[92] . L. Hoo, W. Jin, H. L. Ho et al.. Evanescent-wave gas sensing using microstructure fiber[J]. Opt. Eng., 2002, 41(1): 8-9.

[93] . L. Hoo, W. Jin, C. Z. Shi et al.. Design and modeling of a photonic crystal fiber gas sensor[J]. Appl. Opt., 2003, 42(18): 3509-3515.

[94] . J. Webb. Optical-fiber sensors: An overview[J]. MRS Bull., 2002, 27(5): 365-369.

[95] . Steinvurzel, B. J. Eggleton, C. M. de Sterke et al.. Continuously tunable bandpass filtering using high-index inclusion microstructured optical fibre[J]. Electron. Lett., 2005, 41(8): 463-464.

[96] . Kerbage, M. Sumetsky, B. J. Eggleton. Polarisation tuning by micro-fluidic motion in air-silica microstructured optical fibre[J]. Electron. Lett., 2002, 38(18): 1015-1017.

[97] . Kerbage, P. Steinvurzel, A. Hale et al.. Microstructured optical fibre with tunable birefringence[J]. Electron. Lett., 2002, 38(7): 310-312.

[98] . G. Rarity, J. Fulconis, J. Duligall et al.. Photonic crystal fiber source of correlated photon pairs[J]. Opt. Express, 2005, 13(2): 534-544.

[99] A. Dogariu, J. Y. Fan, L. J. Wang. Correlated photon

[100] . Fan, A. Dogariu, L. J. Wang. Generation of correlated photon pairs in a microstructure fiber[J]. Opt. Lett., 2005, 30(12): 1530-1532.

[101] . E. Sharping, J. Chen, X. Y. Li et al.. Quantum-correlated twin photons from microstructure fiber[J]. Opt. Express, 2004, 12(14): 3086-3094.

[102] . Yusoff, P. Petropoulos, K. Furusawa et al.. A 36-channel × 10-GHz spectrally sliced pulse source based on supercontinuum generation in normally dispersive highly nonlinear holey fiber[J]. IEEE Photon. Technol. Lett., 2003, 15(12): 1689-1691.

[103] . A. van Eijkelenborg. Imaging with microstructured polymer fibre[J]. Opt. Express, 2004, 12(2): 342-346.

[104] . Furusawa, T. Kogure, J. K. Sahu et al.. Efficient low-threshold lasers based on an erbium-doped holey fiber[J]. IEEE Photon. Technol. Lett., 2005, 17(1): 25-27.

[105] . Furusawa, A. Malinowski, J. H. V. Price et al.. Cladding pumped ytterbium-doped fiber laser with holey inner and outer cladding[J]. Opt. Express, 2001, 9(13): 714-720.

[106] . F. Cregan, J. C. Knight, P. St. Russell et al.. Distribution of spontaneous emission from an Er3+-doped photonic crystal fiber[J]. J. Lightwave Technol., 1999, 17(11): 2138-2141.

[107] . Bouwmans, R. M. Percival, W. J. Wadsworth et al.. High-power Er:Yb fiber laser with very high numerical aperture pump-cladding waveguide[J]. Appl. Phys. Lett., 2003, 83(5): 817-818.

[108] . Limpert, N. Deguil-Robin, S. Petit et al.. High power Q-switched Yb-doped photonic crystal fiber laser producing sub-10 ns pulses[J]. Appl. Phys. B, 2005, 81(1): 19-21.

[109] . Limpert, N. D. Robin, I. Manek-Honninger et al.. High-power rod-type photonic crystal fiber laser[J]. Opt. Express, 2005, 13(4): 1055-1058.

[110] . Limpert, T. Schreiber, A. Liem et al.. Thermo-optical properties of air-clad photonic crystal fiber lasers in high power operation[J]. Opt. Express, 2003, 11(22): 2982-2990.

[111] . Limpert, T. Schreiber, S. Nolte et al.. High-power air-clad large-mode-area photonic crystal fiber laser[J]. Opt. Express, 2003, 11(7): 818-823.

[112] G. Bonati, H. Voelckel, T. Gabler et al.. 1.53 kW from a single Yb-doped photonic crystal fiber laser [C]. in Photonics West. 2005, San Jose

[113] . Moenster, P. Glas, G. Steinmeyer et al.. Femtosecond neodymium-doped microstructure fiber laser[J]. Opt. Express, 2005, 13(21): 8671-8677.

[114] . Holzwarth, Th. Udem, T. W. Hnsch et al.. Optical frequency synthesizer for precision spectroscopy[J]. Phys. Rev. Lett., 2000, 85(11): 2264-2267.

[115] . Holzwarth, A. Yu. Nevsky, M. Zimmermann et al.. Absolute frequency measurement of iodine lines with a femtosecond optical synthesizer[J]. Appl. Phys. B, 2001, 73(3): 269-271.

王清月, 胡明列, 柴路. 光子晶体光纤非线性光学研究新进展[J]. 中国激光, 2006, 33(1): 57. 王清月, 胡明列, 柴路. Progress in Nonlinear Optics with Photonic Crystal Fibers[J]. Chinese Journal of Lasers, 2006, 33(1): 57.

本文已被 52 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!