中国激光, 2007, 34 (5): 595, 网络出版: 2007-06-08   

综 述飞秒激光微加工:激光精密加工领域的新前沿 下载: 2957次

Femtosecond Laser Micromachining: Frontier in Laser Precision Micromachining
作者单位
中国科学院上海光学精密机械研究所强场激光物理国家重点实验室, 上海 201800
摘要
飞秒激光微加工技术具有加工精度高、热效应小、损伤阈值低以及能够实现真正的三维微结构加工等优点,这些特性是传统的激光加工技术所无法取代的。首先回顾了激光微加工和超短脉冲激光技术的发展历史,然后介绍超短脉冲激光与金属和介质材料相互作用的机制,接着阐述了飞秒激光直写、干涉和投影制备等各种加工方法的原理,重点讨论飞秒激光在三维光子器件集成、微流体芯片制备及其在生化传感方面的应用等,最后展望了飞秒激光微加工领域所面临的机遇和挑战,指出了未来的研究方向。
Abstract
Femtoseond laser micromachining enables fabrication of true three-dimensional (3D) microstructures with high precision and low heat effect and damage threshold, showing unique advantages over the traditional laser micromachining technology. We first review the histories of laser microprocessing and ultra-short pulse laser technology, and then outline the mechanisms of the interactions of ultra-short laser pulse with metals and transparent media. Next, we introduce several major technical approaches in the field of femtosecond laser micromachining such as femtosecond laser direct writing, multi-beam interference and projection patterning, as well as their applications in fabrication of 3D integrated optical devices, microfluidic chips, and chemical and biological sensors, etc. Lastly, we highlight the opportunities and challenges in the field, and suggest some directions for the future research.
参考文献

[1] T. Maiman. Stimulated optical radiation in ruby [J]. Nature 1960, 187(4736):493~494

[2] W. Steen. Laser Material Processing [M]. New York: Springer Verlag, 1991

[3] . Fork, C. Cruz, P. C. Becker et al.. Compression of optical pulses to six femtoseconds by using cubic phase compensation[J]. Opt. Lett., 1987, 12(7): 483-485.

[4] . Chen, K. Naessens, R. Baets et al.. Ablation of transparent materials using excimer lasers for photonic applications[J]. Opt. Rev., 2005, 12(6): 427-441.

[5] . Kruger, W. Kautek. Ultrashort pulse laser interaction with dielectrics and polymers[J]. Adv. Polym. Sci., 2004, 168: 247-289.

[6] . Fork, B. Greene, C. Shank. Generation of optical pulses shorter than 0.1 psec by colliding pulse mode locking[J]. Appl. Phys. Lett., 1981, 38(9): 671-672.

[7] . Spence, P. Kean, W. Sibbett. 60-fsec pulse generation from a self-mode-locked Ti:sapphire laser[J]. Opt. Lett., 1991, 16(1): 42-45.

[8] . Strickland, G. Mourou. Compression of amplified chirped optical pulses[J]. Opt. Commun., 1985, 56(3): 219-221.

[9] . Shirk, P. Molian. A review of ultrashort pulsed laser ablation of materials[J]. J. Laser Appl., 1998, 10(1): 18-28.

[10] . Ruf, F. Dausinger. Interaction with metals[J]. Topics Appl. Phys., 2004, 96: 105-113.

[11] Y. Yao, H. Chen, W. Zhang. Time scale effects in laser material removal: a review [J]. Int. J. Adv. Manuf. Technol., 2005, 26(5-6):598~608

[12] . Nolte, C. Momma, H. Jacobs et al.. Ablation of metals by ultrashort laser pulses[J]. J. Opt. Soc. Am. B, 1997, 14(10): 2716-2722.

[13] . Hüttner, G. Rohr. On the theory of ps and sub-ps laser pulse interaction with metals Ⅰ. surface temperature[J]. Appl. Surf. Sci., 1996, 103(3): 269-274.

[14] . Fujimoto, J. Liu, E. Ippen. Femtosecond laser interaction with metallic tungsten and nonequilibrium electron and lattice temperatures[J]. Phys. Rev. Lett., 1984, 53(19): 1837-1840.

[15] . Chichkov, C. Momma, S. Nolte et al.. Femtosecond, picosecond, and nanosecond laser ablation of solids[J]. Appl. Phys. A, 1996, 63(2): 109-115.

[16] . Shirk, P. Molian. A review of ultrashort pulsed laser ablation of materials[J]. J. Laser Appl., 1998, 10(1): 18-28.

[17] . Choi, C. Grigoropoulos. Plasma and ablation dynamics in ultrafast laser processing of crystalline silicon[J]. J. Appl. Phys., 2002, 92(9): 4918-4925.

[18] . Lenzner, J. Kruger, S. Sartania et al.. Femtosecond optical breakdown in dielectrics[J]. Phys. Rev. Lett., 1998, 80(18): 4076-4079.

[19] . Mainfray, C. Manus. Multiphoton ionization of atoms[J]. Rep. Prog. Phys., 1991, 54(10): 1333-1372.

[20] . Lubatschowski, A. Heisterkamp. Interaction with biological tissue[J]. Topics Appl. Phys., 2004, 96: 91-104.

[21] . V. Keldysh. Ionization in the field of a strong electromagnetic wave[J]. Sov. Phys. JETP, 1965, 20(5): 1307-1314.

[22] . Lindl. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain[J]. Phys. Plasmas, 1995, 2(11): 3933-4024.

[23] . Posthumus. The dynamics of small molecules in intense laser fields[J]. Rep. Prog. Phys., 2004, 67(5): 623-665.

[24] . Joglekar, H. Liu, E. Meyhofer et al.. Optics at critical intensity: Applications to nanomorphing[J]. Proc. Nat. Acad. Sci. USA, 2004, 101(16): 5856-5861.

[25] . Noack, A. Vogel. Laser-induced plasma formation in water at nanosecond to femtosecond time scales: Calculation of thresholds, absorption coefficients and energy density[J]. IEEE J. Quantum. Electron., 1999, 35(8): 1156-1167.

[26] . Ditmire, J. Tisch, E. Springate et al.. High-energy ions produced in explosions of superheated atomic clusters[J]. Nature, 1997, 386(6620): 54-56.

[27] . Stoian, A. Rosenfeld, D. Ashkenasi et al.. Surface charging and impulsive ion ejection during ultrashort pulsed laser ablation[J]. Phys. Rev. Lett., 2002, 88(9): 97603-97606.

[28] . Roeterdink, L. Juurlink, O. Vaughan et al.. Coulomb explosion in femtosecond laser ablation of Si(111)[J]. Appl. Phys. Lett., 2003, 82(23): 4190-4192.

[29] B. Rethfeld, K. Sokolowski, D. Derlinde et al.. Timescales in the response of materials to femtosecond laser excitation [J]. Appl. Phys. A, 2004, 79(4-6):767~769

[30] . Bulgakova. Rarefaction shock wave: Formation under short pulse laser ablation of solids[J]. Phys. Rev. E, 2001, 63(4): 046311.

[31] . Borowiec, D. Bruce, D. Cassidy et al.. Imaging the strain fields resulting from laser micromachining of semiconductors[J]. Appl. Phys. Lett., 2003, 83(2): 225-227.

[32] . Matthias, M. Reichling, J. Siegel et al.. The influence of thermal-diffusion on laser-ablation of metal-films[J]. Appl. Phy. A, 1994, 58(2): 129-136.

[33] . Stuart, M. Feit, S. Herman et al.. Optical ablation by high-power short-pulse lasers[J]. J. Opt. Soc. Am. B, 1996, 13(2): 459-468.

[34] . Lenzner, F. Krausz, J. Kruger et al.. Photoablation with sub-10 fs laser pulses[J]. Appl. Surf. Sci., 2000, 154: 11-16.

[35] . Watanabe, Y. Kuroiwa, S. Ito. Study of femtosecond laser ablation of multicomponent glass[J]. Reports Res. Lab. Asahi Glass Co., Ltd., 2005, 55: 27-31.

[36] . Baudach, J. Bonse, J. Kruger et al.. Ultrashort pulse laser ablation of polycarbonate and polymethylmethacrylate[J]. Appl. Surf. Sci., 2000, 154: 555-560.

[37] M. Watanabe, H. Sun, S. Juodkazis et al.. Three-dimensional optical data storage in vitreous silica [J]. Jpn. J. Appl. Phys., 1998, 37(Part 2, 12B):L1527~L1530

[38] . Liu. Simple technique for measurements of pulsed Gaussian-beam spot sizes[J]. Opt. Lett., 1982, 7(5): 196-198.

[39] . Stuart, M. Feit, S. Herman et al.. Nanosecond-to-femtosecond laser-induced breakdown in dielectrics[J]. Phys. Rev. B, 1996, 53(4): 1749-1761.

[40] . Glezer, E. Mazur. Ultrafast-laser driven micro-explosions in transparent materials[J]. Appl. Phys. Lett., 1997, 71(7): 882-884.

[41] . Gamaly, S. Juodkazis, K. Nishimura et al.. Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation[J]. Phys. Rev. B, 2006, 73(21): 214101.

[42] Y. Shimotsuma, K. Hirao, P. Kazansky et al.. Three-dimensional micro- and nano-fabrication in transparent materials by femtosecond laser [J]. Jpn. J. Appl. Phys., 2005, 44(Part 1, 7A):4735~4748

[43] . Bonse, S. Baudach, J. Krüger et al.. Femtosecond laser ablation of silicon-modification thresholds and morphology[J]. Appl. Phys. A, 2002, 74(1): 19-25.

[44] . Tsai, B. Friedman, A. Ifarraguerri et al.. All-optical histology using neurotechnique ultrashort laser pulses[J]. Neuron, 2003, 39(1): 27-41.

[45] . Juodkazis, H. Misawa, T. Hashimoto et al.. Laser-induced microexplosion confined in a bulk of silica: Formation of nanovoids[J]. Appl. Phys. Lett., 2006, 88(20): 201909.

[46] . Sundaram, C. Schaffer, E. Mazur. Microexplosions in tellurite glasses[J]. Appl. Phys. A, 2003, 76(3): 379-384.

[47] . Jia, Z. Xu, X.Li et al.. Microscopic mechanisms of ablation and micromachining of dielectrics by using femtosecond lasers[J]. Appl. Phys. Lett., 2003, 82(24): 4382-4384.

[48] . Zhou, M. Gu. Anisotropic properties of ultrafast laser-driven microexplosions in lithium niobate crystal[J]. Appl. Phys. Lett., 2005, 87(24): 241107-1.

[49] . Zhou, M. Gu. Direct optical fabrication of three-dimensional photonic crystals in a high refractive index LiNbO3 crystal[J]. Opt. Lett., 2006, 31(18): 2783-2785.

[50] . Yamasaki, S. Juodkazis S, M. Watanabe et al.. Recording by microexplosion and two-photon reading of three-dimensional optical memory in polymethylmethacrylate films[J]. Appl. Phys. Lett., 2000, 76(8): 1000-1002.

[51] F. Gan. Laser Materials [M]. Singapore: World Scientific, 1995. 314

[52] J. Dickinson, S. Orlando, S. Avanesyan et al.. Color center formation in soda lime glass and NaCl single crystals with femtosecond laser pulses [J]. Appl. Phys. A, 2004, 79(4-6):859~864

[53] . Du, X. Liu, G. Kom et al.. Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs[J]. Appl. Phys.Lett., 1994, 64(23): 3071-3703.

[54] . Efimov, K. Gabel, S. Garnov et al.. Color-center generation in silicate glasses exposed to infrared femtosecond pulses[J]. J. Opt. Soc. Am. B, 1998, 15(1): 193-199.

[55] . Davis, K. Miura, N. Sugimoto et al.. Writing waveguides in glass with a femtosecond laser[J]. Opt. Lett., 1996, 21(21): 1729-1731.

[56] . Homoelle, S. Wielandy, A. Gaeta et al.. Infrared photosensitivity in silica glasses exposed to femtosecond laser pulses[J]. Opt, Lett., 1999, 24(18): 1311-1313.

[57] . Schaffer, A. Brodeur, J. Garcia et al.. Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy[J]. Opt. Lett., 2001, 26(2): 93-95.

[58] . Miura, J. Qiu, H. Inouye et al.. Photowritten optical waveguides in various glasses with ultrashort pulse laser[J]. Appl. Phys. Lett., 1997, 71(23): 3329-3331.

[59] . Homoelle, S. Wielandy, A. Gaeta et al.. Infrared photosensitivity in silica glasses exposed to femtosecond laser pulses[J]. Opt. Lett., 1999, 24(18): 1311-1313.

[60] . Streltsov, F. Borrelli. Study of femtosecond-laser-written waveguides in glasses[J]. J. Opt. Soc. Am. B, 2002, 19(10): 2496-2504.

[61] Zhou Qinling, Liu Liying, Xu Lei et al.. Femtosecond laser induced darkening and refractive index change in K9 glass [J]. Chinese J. Lasers, 2005, 32(1):119~122
周秦岭,刘丽英,徐雷等. 飞秒激光辐照K9玻璃引起的暗化和折射率变化[J]. 中国激光, 2005, 32(1):119~122

[62] . Ganikhanov, K. Burr, D. Hilton et al.. Femtosecond optical-pulse-induced absorption and refractive-index changes in GaAs in the midinfrared[J]. Phys. Rev. B, 1999, 60(12): 8890-8896.

[63] . Kamata. M. Obara. Control of the refractive index change in fused silica glasses induced by a loosely focused femtosecond laser[J]. Appl. Phys. A, 2004, 78(1): 85-88.

[64] . Guo, H. Jiang, Y. Fang et al.. The pulse duration dependence of femtosecond laser induced refractive index modulation in fused silica[J]. J. Opt. A: Pure Appl. Opt., 2004, 6(8): 787-790.

[65] . Yamada, W. Watanabe, T. Toma et al.. In situ observation of photoinduced refractive-index changes in filaments formed in glasses by femtosecond laser pulses[J]. Opt. Lett., 2001, 26(1): 19-21.

[66] . Dinga, R. Blackwellb, J. Künzlerb et al.. Large refractive index change in silicone-based and non-silicone-based hydrogel polymers induced by femtosecond laser micro-machining[J]. Opt. Express, 2006, 14(24): 11901-11909.

[67] . Bhardwaj, E. Simova, P. Corkum et al.. Femtosecond laser-induced refractive index modification in multicomponent glasses[J]. J. Appl. Phys., 2005, 97(8): 083102.

[68] . M. van Driel, J. E. Sipe, J. F. Young. Laser-induced periodic surface structure on solids: a universal phenomenon[J]. Phys. Rev. Lett., 1982, 49(26): 1955-1958.

[69] . E. Sipe, J. F. Young, J. S. Preston et al.. Laser-induced periodic surface structure. Ⅰ. Theory[J]. Phys. Rev. B, 1983, 27(2): 1141-1154.

[70] . E. Clark, D. C. Emmony. Ultraviolet-laser-induced periodic surface structures[J]. Phys. Rev. B, 1989, 40(4): 2031-2041.

[71] . Vorobyev, C. Guo. Effects of nanostructure-covered femtosecond laser-induced periodic surface structures on optical absorptance of metals[J]. Appl. Phys. A, 2007, 86(3): 321-324.

[72] . Costache, M. Henyk , J. Reif. Surface patterning on insulators upon femtosecond laser ablation[J]. Appl. Surf. Sci., 2003, 208: 486-491.

[73] . Seifert, M. Kaempfe, F. Syrowatka et al.. Self-organized structure formation on the bottom of femtosecond laser ablation craters in glass[J]. Appl. Phys. A, 2005, 81(4): 799-803.

[74] . Varlamova, F. Costache, J. Reif et al.. Self-organized pattern formation upon femtosecond laser ablation by circularly polarized light[J]. Appl. Surf. Sci., 2006, 252: 4702-4706.

[75] . Toratani, M. Kamata, M. Obara. Self-fabrication of void array in fused silica by femtosecond laser processing[J]. Appl. Phys. Lett., 2005, 87(17): 171103.

[76] . Zewail. Femtochemistry: Atomic-scale dynamics of the chemical bond[J]. J. Phys. Chem. A, 2000, 104(24): 5660-5694.

[77] . Taylor, C. Hnatovsky, E. Simova et al.. Femtosecond laser fabrication of nanostructures in silica glass[J]. Opt. Lett., 2003, 28(12): 1043-1045.

[78] . Cheng, K. Sugioka, K. Midorikawa. Freestanding optical fibers fabricated in a glass chip using femtosecond laser micromachining for lab-on-a-chip application[J]. Opt. Express, 2005, 13(18): 7225-7232.

[79] . Maruo, O. Nakamura, S. Kawata. Three-dimensional microfabrication with two-photon-absorbed photopolymerization[J]. Opt. Lett., 1997, 22(2): 132-134.

[80] . Kabashin, M. Meunier, C. Kingston et al.. Fabrication and characterization of gold nanoparticles by femtosecond laser ablation in an aqueous solution of cyclodextrins[J]. J. Phys. Chem. B, 2003, 107(19): 4527-4531.

[81] . Fisette, F. Busque, J. Degorce et al..Three-dimensional crystallization inside photosensitive glasses by focused femtosecond laser[J]. Appl. Phys. Lett., 2006, 88(9): 091104.

[82] . Wang, K. Ho, M. Shirk et al.. Laser-Induced Graphitization on a Diamond(111) Surface[J]. Phys. Rev. Lett., 2000, 85(19): 4092-4095.

[83] W. Kautek, J. Krüger. Femtosecond pulse laser ablation of metallic, semiconducting, ceramic and biological materials [C]. SPIE, 1994, 2207:600~611

[84] . Florea, K. Winick. Fabrication and Characterization of Photonic Devices Directly Written in Glass Using Femtosecond Laser Pulses[J]. J. Lightwave Technol., 2003, 21(1): 246-253.

[85] . Chan, T. Huser, S. Risbud et al.. Waveguide fabrication in phosphate glasses using femtosecond laser pulses[J]. Appl. Phys. Lett., 2003, 82(15): 2371-2373.

[86] . Cheng, K. Sugioka, K. Midorikawa et al.. Control of the cross-sectional shape of a hollow microchannel embedded in photostructurable glass by use of a femtosecond laser[J]. Opt. Lett., 2003, 28(1): 55-57.

[87] C. Hnatovsky, R. Taylor, E. Simova et al.. Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching [J]. Appl. Phys. A, 2006, 84(1-2):47~61

[88] . Femtosecond Laser induced funtional microstructures[J]. Physics, 2005, 34(9): 660-665.

[89] . Maznev, T. Crimmins, K. Nelson. How to make femtosecond pulses overlap[J]. Opt. Lett., 1998, 23(17): 1378-1380.

[90] . Kondo, S. Matsuo, S. Juodkazis et al.. Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals[J]. Appl. Phys. Lett., 2001, 79(6): 725-727.

[91] J. Klein-Wiele, J. Bekesi, P. Simon. Sub-micron patterning of solid materials with ultraviolet femtosecond pulses [J]. Appl. Phys. A, 2004, 79(4-6):775~778

[92] . Kondo, S. Matsuo, S. Juodkazis. Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses[J]. Appl. Phys. Lett., 2003, 82(17): 2578-2580.

[93] . Klein-Wiele, P. Simon. Fabrication of periodic nanostructures by phase-controlled multiple-beam interference[J]. Appl. Phys. Lett., 2003, 83(23): 4707-4709.

[94] . Kawamura, N. Sarukura, M.Hirano. Periodic nanostructure array in crossed holographic gratings on silica glass by two interfered infrared-femtosecond laser pulses[J]. Appl. Phys. Lett., 2001, 79(9): 1228-1230.

[95] . Li. Holographic fabrication of multiple layers of grating inside soda-lime glass with femtosecond laser pulses[J]. Appl. Phys. Lett., 2002, 80(9): 1508-1510.

[96] . Hirano, K. Kawamura, H. Hosono. Encoding of holographic grating and periodic nano-structure by femtosecond laser pulse[J]. Appl. Surf. Sci., 2002, 197: 688-698.

[97] . Backus, J. Peatross, Z. Zeek et al.. 16-fs, 1-mu J ultraviolet pulses generated by third-harmonic conversion in air[J]. Opt. Lett., 1996, 21(9): 665-667.

[98] . Marcus, A. Zigler, Z. Henis. Third-harmonic generation at a atmospheric pressure in methane by use of intense femtosecond pulses in the tight-focusing limit[J]. J. Opt. Soc. Am. B, 1999, 16(5): 792-800.

[99] Y. Nakata, T. Okada, M. Maeda. Lithographical laser ablation using femtosecond laser[J]. Appl. Phys. A, 2004, 79(4-6):1481~1483

[100] . Kuroiwa, N. Takeshima, Y. Narita et al.. Arbitrary micropatterning method in femtosecond laser microprocessing using diffractive optical elements[J]. Opt. Express, 2004, 12(9): 1908-1915.

[101] . Lee, S. Song, Y. Lee et al.. Arbitrary surface structuring of amorphous silicon films based on femtosecond-laser-induced crystallization[J]. Appl. Phys. Lett., 2006, 89(15): 151907.

[102] . Higgins, T. Everett, A. Xie et al.. High-resolution direct-write multiphoton photolithography in poly(methylmethacrylate) films[J]. Appl. Phys. Lett., 2006, 88(18): 184101.

[103] . Matsuo, S. Juodkazis, H. Misawa. Femtosecond laser microfabrication of periodic structures using a microlens array[J]. Appl. Phys. A, 2005, 80(4): 683-685.

[104] . Sun, S. Kawata. Multiple-spot parallel processing for laser micronanofabrication[J]. Appl. Phys. Lett., 2005, 86(4): 044102.

[105] . Cerullo, R. Osellame, S. Taccheo et al.. Femtosecond micromachining of symmetric waveguides at 1.5 μm by astigmatic beam focusing[J]. Opt. Lett., 2002, 27(21): 1938-1940.

[106] . Kawamura, A. Takita, Y. Hayasaki et al.. Method for reducing debris and thermal destruction in femtosecond laser processing by applying transparent coating[J]. Appl. Phys. A, 2006, 82(3): 523-527.

[107] . Chan, T. Huser, S. Risbud et al.. Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses[J]. Appl. Phys. A, 2003, 76(3): 367-372.

[108] . Woo, S. Lee, J. Chung. Fabrication of photonic devices directly written within glass using a femtosecond laser[J]. Opt. Express, 2005, 13(11): 4224-4229.

[109] . Streltsov, N. Borrelli. Fabrication and analysis of a directional coupler written in glass by nanojoule femtosecond laser pulses[J]. Opt. Lett., 2001, 26(1): 42-44.

[110] . Watanabe, Y. Note, K. Itoh. Fabrication of multimode interference waveguides in glass by use of a femtosecond laser[J]. Opt. Lett., 2005, 30(21): 2888-2890.

[111] . Martinez, M. Dubov, I. Khrushchev et al.. Direct writing of fibre Bragg gratings by femtosecond laser[J]. Elect. Lett., 2004, 40(19): 1170-1172.

[112] . Dragomir, D. Nikogosyan, K. Zagorulko et al.. Inscription of fiber Bragg gratings by ultraviolet femtosecond radiation[J]. Opt. Lett., 2003, 28(22): 2171-2173.

[113] . Smelser, D. Grobnic, S. Mihailov. Generation of pure two-beam interference grating structures in an optical fiber with a femtosecond infrared source and a phase mask[J]. Opt. Lett., 2004, 29(15): 1730-1732.

[114] . Nasu, M. Kohtoku, Y. Hibino. Low-loss waveguides written with a femtosecond laser for flexible interconnection in a planar light-wave circuit[J]. Opt. Lett., 2005, 30(7): 723-725.

[115] . Watanabe, T. Asano, K. Yamada et al.. Wavelength division with three-dimensional couplers fabricated by filamentation of femtosecond laser pulses[J]. Opt. Lett., 2003, 28(24): 2491-2493.

[116] . Kowalevicz, V. Sharma, E. Ippen et al.. Three-dimensional photonic devices fabricated in glass by use of a femtosecond laser oscillator[J]. Opt. Lett., 2005, 30(9): 1060-1062.

[117] . Masuda, K. Sugioka, Y. Cheng et al.. 3-D microstructuring inside photosensitive glass by femtosecond laser excitation[J]. 76(5):Appl. Phys. A., 2003, 76(5): 857-860.

[118] . Cheng, K. Sugioka, K. Midorikawa et al.. Three-dimensional micro-optical components embedded in photosensitive glass by a femtosecond laser[J]. Opt. Lett., 2003, 28(13): 1144-1146.

[119] . Hongo, K. Sugioka, H. Niino et al.. Investigation of photoreaction mechanism of photosensitive glass by femtosecond laser[J]. J. Appl. Phys., 2005, 97(6): 063517.

[120] . Cheng, H.Tsai, K. Sugioka et al.. Fabrication of 3D microoptical lenses in photosensitive glass using femtosecond laser micromachining[J]. Appl. Phys. A, 2006, 85(1): 11-14.

[121] . Cheng, K. Sugioka, M. Masuda et al.. Optical gratings embedded in photosensitive glass by photochemical reaction using a femtosecond laser[J]. Opt. Express, 2003, 11(15): 1089-1096.

[122] . Garcia, E. Ponizovskaya, J. Xiao. Zero permittivity materials: Band gaps at the visible[J]. Appl. Phys. Lett., 2002, 80(7): 1120-1122.

[123] R. Madrigal, L. Blaya, M. Ulibarrena et al.. Diffraction efficiency of unbleached phase and amplitude holograms as a function of volumn fraction of metallic silver [J]. Opt. Commun., 2002, 201(4-6):279~282

[124] . Kaneko, H. Sun, X. Duan et al.. Two-photon photoreduction of metallic nanoparticle gratings in a polymer matrix[J]. Appl. Phys. Lett., 2003, 83(7): 1426-1428.

[125] . Takeshima, Y. Narita, S. Tanaka et al.. Fabrication of high-efficiency diffraction gratings in glass[J]. Opt. Lett., 2005, 30(4): 352-354.

[126] . Bricchi, J. Mills, P. Kazansky et al. Birefringent Fresnel zone plates in silica fabricated by femtosecond laser machining[J]. Opt. Lett., 2002, 27(24): 2200-2202.

[127] . Watanabe, D. Kuroda, K. Itoh. Fabrication of Fresnel zone plate embedded in silica glass by femtosecond laser pulses[J]. Opt. Express, 2002, 10(19): 978-983.

[128] . Sugioka, Y. Cheng, K. Midorikawa. Three-dimensional micromachining of glass using femtosecond laser for lab-on-a-chip device manufacture[J]. Appl. Phys. A, 2005, 81(1): 1-10.

[129] . Noda, K. Tomoda, N. Yamamoto et al.. Full three-dimensional photonic bandgap crystals at near-Infrared wavelengths[J]. Science, 2000, 289(5479): 604-606.

[130] . Loncar, D. Nedeljkovic, T. Doll et al.. Waveguiding in planar photonic crystals[J]. Appl. Phys. Lett., 2000, 77(13): 1937-1939.

[131] . Joannopoulos, P. Villeneuve, S. Fan. Photonic crystals: putting a new twist on light[J]. Nature, 1997, 386(6621): 143-149.

[132] . Srinivasan, P. Barclay, O. Painter et al.. Experimental demonstration of a high quality factor photonic crystal microcavity[J]. Appl. Phys. Lett., 2003, 83(10): 1915-1917.

[133] . Lee, S. Pruzinsky, P. Braun. Multi-photon polymerization of waveguide structures within three dimensional photonic crystals[J]. Adv. Mater., 2002, 14(4): 271-274.

[134] . Ye, S. Badilescu, V. Truong. Large-scale ordered macroporous SiO2 thin films by a template directed method[J]. Appl. Phys. Lett., 2002, 81(4): 616-618.

[135] . Campbell, D. Sharp, M. Harrison et al..Fabrication of photonic crystals for the visible spectrum by holographic lithography[J]. Nature, 2000, 404(6773): 53-56.

[136] . Ullal, M. Maldovan, E. Thomas et al.. Photonic crystals through holographic lithography: Simple cubic, diamond-like, and gyroid-like structures[J]. Appl. Phys. Lett., 2004, 84(26): 5434-5436.

[137] . Takeshima, Y. Narita, T. Nagata et al.. Fabrication of photonic crystals in ZnS-doped glass[J]. Opt. Lett., 2005, 30(5): 537-539.

[138] . Sun, Y. Xu, S. Juodkazis et al.. Arbitrary-lattice photonic crystals created by multiphoton microfabrication[J]. Opt. Lett., 2001, 26(6): 325-327.

[139] . Zhou, M. Ventura, M. Straub et al.. In-plane and out-of-plane band-gap properties of a two-dimensional triangular polymer-based void channel photonic crystal[J]. Appl. Phys. Lett., 2004, 84(22): 4415-4417.

[140] . Zhou, M. Ventura, M. Vanner et al.. Use of ultrafast-laser-driven microexplosion for fabricating three-dimensional void-based diamond-lattice photonic crystals in a solid polymer material[J]. Opt. Lett., 2004, 29(19): 2240-2242.

[141] . Zhou, M. Ventura, M. Gu et al.. Photonic bandgap properties of void-based body centered-cubic photonic crystals in polymer[J]. Opt. Express, 2005, 13(12): 4390-4396.

[142] . Zhou, M, Ventura, M. Vanner et al.. Fabrication and characterization of face-centered-cubic void dots photonic crystals in a solid polymer material[J]. Appl. Phys. Lett., 2005, 86(1): 011108.

[143] . Parthenopoulos, P. Rentzepis. Three-Dimensional Optical Storage Memory[J]. Science, 1989, 245(4920): 843-845.

[144] . Glezer, M. Milosavljevic, L. Huang et al.. Three-dimensional optical storage inside transparent materials[J]. Opt. Lett., 1996, 21(24): 2023-2025.

[145] J. Qiu, K. Miura, K. Hirao. Three-dimensional optical memory using glasses as a recording medium through a multi-photon absorption process [J]. Jpn. J. Appl. Phys., 1998, 37(Part 1, 4B):2263~2266

[146] M. Hong, B. Yanchuk, S. Huang et al.. Femtosecond laser application for high capacity optical data storage [J]. Appl. Phys. A, 2004, 79(4-6):791~794

[147] . Martin, S. Rishton, H. Wickramasinghe. Optical data storage read out at 256 Gbits/in(2)[J]. Appl. Phys. Lett., 1997, 71(1): 1-3.

[148] . Wilson, Y. Kawata and S. Kawata. Readout of three-dimensional optical memories[J]. Opt. Lett., 1996, 21(13): 1003-1005.

[149] . Sun, S. Matsuo, H. Misawa. Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin[J]. Appl. Phys. Lett., 1999, 74(6): 786-788.

[150] . Cumpston, S. Ananthave, S. Barlow DL et al.. Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication[J]. Nature, 1999, 398(6722): 51-54.

[151] . Zhou, S. Kuebler, K. Braun et al.. An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication[J]. Science, 2002, 296(5570): 1106-1109.

[152] . Sun, S. Kawata. Two-photon laser precision microfabrication and its applications to micro-nano devices and systems[J]. J. Lightwave Technol., 2003, 21(3): 624-633.

[153] . Lee, D. Yang, S. Park et al.. Recent developments in the use of two-photon polymerization in precise 2D and 3D microfabrications[J]. Polym. Adv. Technol., 2006, 17(2): 72-82.

[154] . Formanek, N. Takeyasu, T. Tanaka et al.. Three-dimensional fabrication of metallic nanostructures over large areas by two-photon polymerization[J]. Opt. Express, 2006, 14(2): 800-809.

[155] . Serbin, A. Egbert, A. Ostendorf et al.. Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics[J]. Opt. Lett., 2003, 28(5): 301-303.

[156] . Straub, M. Gu. Near-infrared photonic crystals with higher-order bandgaps generated by two-photon photopolymerization[J]. Opt. Lett., 2002, 27(20): 1824-1826.

[157] . Reinhardt, S. Passinger, B. Chichkov. Laser-fabricated dielectric optical components for surface plasmon polaritons[J]. Opt. Lett., 2006, 31(9): 1307-1309.

[158] K. Komatsu, J. Ishihara, O. Sugojara et al.. Fabrication of calixarene derivative optical waveguide using two-photon assisted polymerization method [J]. Jpn. J. Appl. Phys., 2006, 45(Part 1, 1B):479~482

[159] . Maselli, R. Osellame, G. Cerullo et al.. Fabrication of long microchannels with circular cross section using astigmatically shaped femtosecond laser pulses and chemical etching[J]. Appl. Phys. Lett., 2006, 88(19): 191107.

[160] . Giridhar, K. Seong, A. Schülzgen et al.. Femtosecond pulsed laser micromachining of glass substrates with application to microfluidic devices[J]. Appl. Opt., 2004, 43(23): 4584-4589.

[161] Y. Iga, T. Ishizuka, W. Watanabe et al.. Characterization of micro-channels fabricated by in-water ablation of femtosecond laser pulses [J]. Jpn. J. Appl. Phys., 2004, 43(Part 1, 7A):4207~4211

[162] . An, Y. Li, Y. Dou et al.. Water-assisted drilling of microfluidic chambers inside silica glass with femtosecond laser pulses[J]. Appl. Phys. A, 2006, 83(1): 27-29.

[163] . Cheng, K. Sugioka, K. Midorikawa. Microfluidic laser embedded in glass by three-dimensional femtosecond laser microprocessing[J]. Opt. Lett., 2004, 29(17): 2007-2009.

[164] Meng Xiangeng, Zhao Chongjun, Qiu Jianrong. Applications of femtosecond laser in preparation of metal nanoparticles and material micro-processing [J]. Laer & Electronics Progress, 2004, 41(4):48~52
孟宪赓,赵崇军, 邱建荣. 飞秒激光在金属纳米材料制备和材料微结构加工中的应用[J]. 激光与光电子学进展, 2004, 41(4):48~52

[165] . Philip, G. Kumar, N. Sandhyarani et al.. Picosecond optical nonlinearity in monolayer-protected gold, silver, and gold-silver alloy nanoclusters[J]. Phys. Rev. B, 2000, 62(19): 13160-13166.

[166] . Liao, R. Xiao, H. Wang et al. Large third-order optical nonlinearity in Au :TiO2 composite films measured on a femtosecond time scale[J]. Appl. Phys. Lett., 1998, 72(15): 1817-1819.

[167] . Eliezer, N. Eliaz, E. Grossman et al.. Nanoparticles and nanotubes induced by femtosecond lasers[J]. Laser Part. Beams, 2005, 23(1): 15-19.

[168] . Amoruso, G. Ausanio, R. Bruzzese et al.. Femtosecond laser pulse irradiation of solid targets as a general route to nanoparticle formation in a vacuum[J]. Phys. Rev. B, 2005, 71(3): 033406.

[169] . Kabashin, M. Meunier. Synthesis of colloidal nanoparticles during femtosecond laser ablation of gold in water[J]. J. Appl. Phys., 2003, 94(12): 7941-7943.

[170] . Kwiet, D. Starr, A. Grujic et al.. Femtosecond laser induced desorption of water from silver nanoparticles[J]. Appl. Phys. B, 2005, 80(1): 115-123.

[171] . Sylvestre, A. Kabashin, E. Sacher et al.. Femtosecond laser ablation of gold in water: influence of the laser-produced plasma on the nanoparticle size distribution[J]. Appl. Phys. A, 2005, 80(4): 753-758.

[172] . Qiu, X. Jiang, C. Zhu et al.. Optical properties of structurally modified glasses doped with gold ions[J]. Opt. Lett., 2004, 29(4): 370-372.

[173] . Qu, J. Qiu, C. Zhao et al. Metal nanoparticle precipitation in periodic arrays in Au2O-doped glass by two interfered femtosecond laser pulses[J]. Appl. Phys. Lett., 2004, 84(12): 2046-2048.

[174] . Geohegan, A. Puretzky, G. Duscher et al.. Time-resolved imaging of gas phase nanoparticle synthesis by laser ablation[J]. Appl. Phys. Lett., 1998, 72(23): 2987-2989.

[175] . Kabashin, J. Sylvestre, S. Patskovsky et al.. Correlation between photoluminescence properties and morphology of laser-ablated Si/SiOx nanostructured films[J]. J. Appl. Phys., 2002, 91(5): 3248-3254.

[176] . Link, C. Burda, B. Nikoobakht et a1.. Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses[J]. Phys. Chem. B, 2000, 104(26): 6152-6163.

[177] . Fojtik, A. Henglein. Laser ablation of film and suspended particles in a solvent-formation of cluster and colloid solutions[J]. Phys. Chem., 1993, 97(2): 252-254.

[178] . Qiu, M. Shirai, T. Nakaya et al.. Space-selective precipitation of metal nanoparticles inside glasses[J]. Appl. Phys. Lett., 2002, 81(16): 3040-3042.

[179] . Preparation and optical properties of functional nanoparticles doped glasses[J]. J. Chin. Ceram. Soc., 2003, 31(10): 974-980.

[180] . Juhasz, F. Loesel, R. Kurtz et al.. Corneal Refractive Surgery with Femtosecond Lasers[J]. IEEE J. Select. Topics Quantum Elect., 1999, 5(4): 902-910.

[181] . Heisterkamp, I. Maxwell, E. Mazur et al.. Pulse energy dependence of subcellular dissection by femtosecond laser pulses[J]. Opt. Express, 2005, 13(10): 3690-3696.

[182] . Venkatakrishnan, B. Ngoi, P. Stanley et a1.. Laser writing techniques for photomask fabrication using a femtosecond laser[J]. Appl. Phys. A, 2002, 74(4): 493-496.

[183] . Watanabea, S. Onda, T. Tamaki et al.. Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses[J]. Appl. Phys. Lett., 2006, 89(2): 021106.

何飞, 程亚. 综 述飞秒激光微加工:激光精密加工领域的新前沿[J]. 中国激光, 2007, 34(5): 595. 何飞, 程亚. Femtosecond Laser Micromachining: Frontier in Laser Precision Micromachining[J]. Chinese Journal of Lasers, 2007, 34(5): 595.

本文已被 64 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!