中国激光, 2009, 36 (8): 1909, 网络出版: 2009-08-13   

酞菁类光限幅功能材料

Phthalocyanine-Based Optical Limiting Functional Materials
作者单位
1 华东理工大学化学与分子工程学院教育部结构可控先进功能材料及其制备重点实验室, 上海 200237
2 福州大学材料科学与工程学院, 福建 福州 350002
摘要
酞菁及其衍生物是一类能在相当宽的紫外可见吸收光谱范围内通过激发态吸收过程限制纳秒激光脉冲强度的理想光限幅材料之一, 可以保护人眼、光学仪器、传感器等免受激光损伤。由于酞菁分子结构的灵活性, 可以在很大程度上通过结构设计或修饰来调节其光限幅响应能力。对酞菁进行轴向取代修饰能有效地防止材料聚集行为, 增强材料的非线性光学和光限幅能力。这类酞菁的纳秒非线性吸收和光限幅行为主要取决于电子吸收谱中位于Q-带和B-带之间的激发态吸收性能。着重介绍了近年来基于可溶性轴向和侧基取代的酞菁及其衍生物的光限幅功能材料研究的最新进展。
Abstract
Phthalocyanines are such materials that optically limit nanosecond light pulses in a fairly wide range of the UV/Vis spectrum via excited state absorption processes, which can be used to protect human eyes, optical elements and sensors from intense laser pulses. Optical limiting response can be tailored over a broad range due to the high architectural flexibility of the phthalocyanine structure. A series of new highly soluble axially and peripherally substituted or bridged phthalocyanine-based organic functional materials with excellent optical limiting potential have been reported in recent years. The usual tendency of phthalocyanines to form aggregates can be effectively suppressed by axial substitution. The nanosecond nonlinear absorption and the optical limiting of axially modified phthalocyanines are dominated by a strong triplet state absorption in the optical region comprised between Q-bands and B-bands in their UV/Vis absorption spectra. This review lays special stress on introducing the recent progress in this area.
参考文献

[1] 胥杰, 赵尚弘, 王怀军 等. 高功率光纤激光器用于战术激光武器[J]. 激光杂志, 2007, 28(5): 6~7

    Xu Jie, Zhao Shanghong, Wang Huaijun et al.. High power optical fiber laser for tactical laser weapon[J]. Laser Journal, 2007, 28(5): 6~7

[2] 汪平河, 廖弦, 饶云江. 一种新型自激发布里渊掺铒光纤激光器[J]. 光学学报, 2007, 27(12): 2200~2204

    Wang Pinghe, Liao Xian, Rao Yunjiang. A novel self-exciting Brillouin erbium-doped fiber laser[J]. Acta Optica Sinica, 2007, 27(12): 2200~2204

[3] 王清月, 胡明列, 宋有建 等. 用大模场光子晶体光纤获得高功率飞秒激光[J]. 中国激光, 2007, 34(12): 1603~1606

    Wang Qingyue, Hu Minglie, Song Youjian et al.. Large-mode-area photonic crystal fiber laser output high average power femtosecond pulses[J]. Chinese. J. Laser, 2007, 34(12): 1603~1606

[4] 王元虎, 曲彦臣, 赵卫疆 等. 二维振镜调谐TEA CO2激光器[J]. 中国激光, 2008, 35(3): 359~362

    Wang Yuanhu, Qu Yanchen, Zhao Weijiang et al.. Tunable TEA CO2 laser by a two-dimensional scanning system[J]. Chinese. J. Laser, 2008, 35(3): 359~362

[5] Y.Chen, M. E. EI-Khouly, J. J. Doyle et al.. Phthalocyanines and Related Compounds: Nonlinear Optical Response and Photoinduced Electron Transfer Process[M]. Handbook of Organic Electronics and Photonics, American Scientific Publishers, Stevenson Ranch, California, USA, 2008, 2: 151~181

[6] . Chen, M. Hanack, Y. Araki et al.. Axially modified gallium phthalocyanines and naphthalocyanines for optical limiting[J]. Chem. Soc. Rev., 2005, 34(6): 517-529.

[7] . Krivokapic, H. L. Anderson, G. Bourhill et al.. Meso-tetra-alkynyl porphyrins for optical limiting-a survey of group Ⅲ and Ⅳ metal complexes[J]. Adv. Mater., 2001, 13(9): 652-656.

[8] 王芳芳, 张琨, 朱宝华 等. 取代基对卟啉类化合物三阶非线性光学特性的影响[J]. 光学学报, 2008, 28(1): 132~137

    Wang Fangfang, Zhang Kun, Zhu Baohua et al.. Substituent effect on the thrid-order nonlinear optical properties of porphyrin compounds[J]. Acta Optica Sinica, 2008, 28(1): 132~137

[9] . J. Zhou, W. Y. Wong, C. Ye et al.. Optical power limiters based on colorless di-,oligo-,and polymetallaynes:highly transparent materials for eye protection devices[J]. Adv. Funct. Mater., 2007, 17: 963-975.

[10] . Smilowitz, D. McBranch, V. Klimo et al.. Enhanced optical limiting in derivatized fullerenes[J]. Opt. Lett., 1996, 21(13): 922-924.

[11] H. S. Nalwa, J. S. Shirk. Phthalocyanines: Properties and Applications[M]. Eds Leznoff, C. C.; Lever, A. B. P.,VCH Publishers, Inc., New York ,1996

[12] . W. Spangler. Recent development in the design of organic materials for optical power limiting[J]. J. Mater. Chem., 1999, 9: 2013-2020.

[13] . J. Doyle, B. Ballesteros, G. Torre et al.. Combination of phthalocyanine and fullerene moieties for optical limiting[J]. Chem. Phys. Lett., 2006, 428: 307-311.

[14] . Torre, P. Vazquez, F. Agullo-Lopez et al.. Role of structural factors in the nonlinear optical properties of phthalocyanines and related compounds[J]. Chem. Rev., 2004, 104: 3723-3750.

[15] . Calvete, G. Y. Yang, M. Hanack. Porphyrins and phthalocyanines as materials for optical limiting[J]. Synth. Met., 2004, 141: 231-243.

[16] N. B. Mckeown. Phthalocyanine Materials: Synthesis, Structure and Function[M]. Cambridge University Press, 1998

[17] . Braun, J. Tchemiac. Phthalocyanines: Synthesis[J]. J. Chem. Ber., 1907, 40: 2709-2718.

[18] . Sommerauer, C. Rager, M. Hanack. Separation of 2(3), 9(10), 16(17), 23(24)-tetra substituted phthalocyanines with newly developed HPLC phases[J]. J. Am. Chem. Soc., 1996, 118(42): 10085-10093.

[19] . Z. Ho, C. Y. Ju, W. M. Hetherington Ⅲ. Third harmonic generation in phthalocyanines[J]. J. Appl. Phys., 1987, 62(2): 716-718.

[20] C. Y. Ju, W. M. Hetherington Ⅲ, D. R. Coulter et al.. Optical limiting in solution of metallophthalocyanines and naphthalocyanines [C]. SPIE, 1989, 1105: 42~46

[21] M. Hanack, T. Schneider, M. Batrthel et al.. Indium phthalocyanines and naphthalocyanines for optical limiting [J]. Coord. Chem. Rev., 2001, 219-221: 235~258

[22] . M. Tian, S. Yanagi, K. Sasak et al.. Syntheses and nonlinear optical properties of nonaggregated metallophthalocyanines[J]. J. Opt. Soc. Am. B., 1998, 15(2): 846-853.

[23] . A. Miles. Bottleneck optical limiters: the optimal use of excited-state absorbers[J]. Appl. Opt., 1994, 33(30): 6965-6979.

[24] . Henari, A. Davey, W. J. Blau et al.. The electronic and non-linear optical properties of oxo-titanium phthalocyanines[J]. J. Porph. Phthal., 1999, 3(5): 331-338.

[25] . Dini, M. Barthel, T. Schneider. Phthalocyanines and related compounds as switchable materials upon strong irradiation: the molecular engineering behind the optical limiting effect[J]. Sol. St. Ionics., 2003, 165: 289-293.

[26] . S. Shirk, R. G. S. Pong, S. R. Flom et al.. Effect of axial substitution on the optical limiting properties of indium phthalocyanines[J]. J. Phys. Chem. A, 2000, 104: 1438-1449.

[27] H. Heckmann. New dyes for optical limiting: indium phthalocyanines and naphthalocyanines[D]. Tuebingen:Tuebingen University, 1999

[28] . Chen, M. Barthel, M. Seiler et al.. An axially bridged indium phthalocyanine dimer with an In-In bond[J]. Angew. Chem. Int. Ed. Engl., 2002, 41: 3239-3242.

[29] . Chen, M. Fujitsuka, S. M. O’Flaherty et al.. Strong optical limiting of soluble axially substituted gallium and indium phthalocyanines[J]. Adv. Mater., 2003, 15(11): 899-902.

[30] . Chen, D. Dini, M. Hanack et al.. Excited state properties of monomeric and dimeric axially bridged indium phthalocyanines upon UV-Vis laser irradiation[J]. Chem. Commun., 2004, 3: 340-341.

[31] . Chen, L. R. Subramanian, M. Fujitsuka et al.. Synthesis and optical limiting properties of axially bridged phthalocyanines: [tBu4PcGa]2O and [tBu4PcIn]2O[J]. Chem. Eur. J., 2002, 8(18): 4248-4254.

[32] Y. Chen, L. R. Subramanian, M. Barthel et al.. Synthesis and characterization of soluble axially substituted tetra-(tertbutyl) gallium(Ⅲ)phthalocyanines [J]. Eur. J. Inorg. Chem., 2002, 1032~1034

[33] . Chen, S. M. O′ Flaherty, M. Hanack et al.. Synthesis and optical limiting properties of new axially aryloxy substituted gallium phthalocyanines[J]. J. Mater. Chem., 2003, 13(10): 2405-2408.

[34] . Bertagnolli, W. J. Blau, Y. Chen et al.. Synthesis, characterization and optical limiting properties of a gallium phthalocyanine dimer[J]. J. Mater. Chem., 2005, 15(6): 683-689.

[35] . Barthel, M. Hanack. Axially substituted titanium (IV) phthalocyanines[J]. J. Porph. Phthal., 2000, 4: 635-638.

[36] . Dini, M. Barthel, M. Hanack. Phthalocyanines as active materials for optical limiting[J]. Eur. J. Org. Chem., 2001, 20: 3759-3769.

[37] . Chen, M. E. EI-Khouly, M. Sasaki et al.. Synthesis of the axially substituted titanium Pc-C60 dyad with a convenient method[J]. Org. Lett., 2005, 7(8): 1613-1616.

[38] . S. Nalwa, A. Kakuta, A. Muko. Third-order nonlinear optical properties of a vanadyl naphthalocyanine derivative[J]. J. Phys. Chem., 1993, 97(6): 1097-1100.

[39] . Y. Yang, M. Hanack, Y. W. Lee et al.. Synthesis and nonlinear optical properties of fluorine-containing naphthalocyanines[J]. Chem. Eur. J., 2003, 9(12): 2758-2762.

[40] . Dini, M. J. F. Calvete, M. Hanack. Nonlinear transmission of a tetrabrominated naphthalocyaninato indium chloride[J]. J. Phy. Chem. B., 2006, 110: 12230-12239.

[41] . F. Sun, G. Wang, Y. J. Li. Axial halogen ligand effect on photophysics and optical power limiting of some indium naphthalocyanines[J]. J. Phys. Chem. A., 2007, 111: 3263-3270.

何楠, 陈彧, 刘莹, 冯苗, 胡正, 高丽丽. 酞菁类光限幅功能材料[J]. 中国激光, 2009, 36(8): 1909. He Nan, Chen Yu, Liu Ying, Feng Miao, Hu Zheng, Gao Lili. Phthalocyanine-Based Optical Limiting Functional Materials[J]. Chinese Journal of Lasers, 2009, 36(8): 1909.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!