中国激光, 2009, 36 (9): 2213, 网络出版: 2009-10-09   

太赫兹通信技术的研究与展望 下载: 2488次

Study and Outlook of Terahertz Communication Technology
作者单位
1 天津大学精密仪器与光电子工程学院, 天津 300072
2 华中科技大学武汉光电国家实验室, 湖北 武汉 430074
3 复旦大学信息科学与工程学院通信科学与工程系, 上海 200433[复旦大学]
4 长春理工大学光电信息学院, 吉林 长春 130022
摘要
太赫兹通信是一个极具应用前景的技术,太赫兹波有非常宽的还没分配的频带,并且具有传输速率高、方向性好、安全性高、散射小及穿透性好等许多特性。发展太赫兹通信技术已成为各发达国家研究的热点。该文分析了国内外太赫兹通信的研究情况;以太赫兹通信系统的整体框架,全面地介绍和分析了太赫兹通信的一些关键技术和最新研究成果;同时,对太赫兹的技术发展趋势和应用前景做了展望,提出了太赫兹技术的发展战略。
Abstract
Terahertz technology has great potential application; terahertz wave has broad\|band which isn’t occupied. It has following features: higher data transfer rate,good direction, higher safety, lower scatter, higher transmittance and so on. Terahertz technology is becoming a research focus in communication field in developed countries. The paper introduces several key technologies and analyses latest achievement, basing on the framework of terahertz communication. At the same time, the paper foretells developing trend and application prospect and put forward the terahertz development strategy.
参考文献

[1] See: heep://www.ntia.doc.gov/osmhome/allochrt.pdf

[2] Ken Suto, Jun-ichi Nishizawa. Developments of terahertz wave generation technologies[C]. SPIE, 2004, 5401: 311-317

[3] A. Charles, Schmuttenmaer. Exploring dynamics in the far-infrared with terahertz spectroscopy[J]. Chem. Rev., 2004, 104: 1759-1779

[4] M. Nagel, P. H. Bolivae, M. Brucherseifer et al.. Integrated Thz technology for label-free genetic diagnostics[J]. Appl. Phys. Lett., 2002, 80: 154-156

[5] Radoslaw Piesiewicz, Martin Jacob, Martin Kochet et al.. Performance analysis of future multigigabit wireless communication systems at THz frequencies with highly directive antennas in realistic indoor environments[J]. IEEE J. Sel. Top. Quantum Electron., 2008, 14(2): 421-430

[6] Akihiko Hirata, Toshihiko Kosugi, Hiroyuki Takahashi et al.. 120-GHz-band millimeter-wave photonic wireless link for 10-Gb/s data transmission[J]. IEEE Transactions on Microwave Theory and Technology, 2006, 54(05): 1937-1944

[7] Tadao Nagatsuma, Akihiko Hirata. 10-Gbit/s wireless link technology using the 120-GHz band. Letters[J]. NTT Technical Review, 2004: 58-62

[8] T. Kosugi, M. Tokumitsu, T. Enoki et al.. 120-GHz Tx/Rx chipset for 10-Gbit/s wireless applications using 0.1-μm-gate InP HEMTs[C]. IEEE, Compound Semiconductor Integrated Circuit Symposium, 2004. 171-174

[9] Ryoichi Yamaguchi, Akihiko Hirata, Toshihiko Kosugi et al.. 10-Gbit/s MMIC wireless link exceeding 800 meters[C]. IEEE, Radio and Wireless Symposium, 2008. 695-698

[10] Martin Koch. Terahertz Frequency Detection and Identification of Materials and Objects[M]. Terahertz Communication: A 2020 Vision. 2007, 325-338

[11] Crowe, T. W. Multiplier technology for terahertz applications[C]. IEEE, Terahertz Electronics Proceedings, 1998. 58-61

[12] Michael J. Fitch, Robert Osiander. Terahertz waves for communications and sensing[J]. Johns Hopkins APL Technical Digest, 2004, 25(4): 348-355

[13] 申金娥, 荣健, 刘文鑫. 太赫兹技术在通信方面的研究进展[J]. 红外与激光工程, 2006, 35(s3): 333-347

    Shen Jin-e, Rong Jian, Liu Wenxin. Progress of terahertz in communication technology[J]. Infrared and Laser Engineering, 2006, 35(s3): 333-347

[14] S. Cherry. Edholm’s law of bandwidth[J]. IEEE Spectr, 2004, 41(7): 58-60

[15] Tadao Nagatsuma, Akihiko Hirata, Naoya Kukutsu et al.. Multiplexed transmission of uncompressed HDTV signals using 120-GHz-band millimeter-wave wireless link[J]. IEEE, 2007, 1-4244-1168-8/07: 237-240

[16] Wai Hung, Chun-Kit Chan, Lian-Kuan Chen et al.. An optical network unit for WDM access networks with downstream DPSK and upstream remodulated OOK data using injection-locked FP laser[J]. IEEE Photon. Technol. Lett., 2003, 15(10): 1476-1478

[17] A. Hirata, M. Harada, T. Nagatsuma. 120-GHz wireless link using photonic techniques for generation, modulation and emission of millimeter-wave signals[J]. J. Lightwave Technol., 2003, 21(10): 2145-53

[18] Akihiko Hirata, Toshihiko Kosugi, Nicholas Meisl et al.. High-directivity photonic emitter using photodiode module integrated with HEMT amplifier for 10-Gbit/s wireless link[J]. IEEE Transactions on Microwave Theory and Technology, 2004, 52(8): 1843-1850

[19] Tadao Nagatsuma. Exploring sub-terahertz waves for future wireless communications[C]. IEEE, IRMMW-THz 2006, Joint 31st International Conference. 4

[20] F. Nakajima, T. Furuta, H. Ito. High power terahertz wave generation using a resonant antenna integrated uni-travelling-carrier photodiode[J]. Nippon Telegraph and Telephone Corporation, 2006, 40(20): 1297-1298

[21] T. Nagatsuma, A. Hirata, R. Yamaguchi et al.. Sub-terahertz wireless communications technologies[C]. IEEE, ICECom 2005, 18th International Conference. 1-4

[22] Toshihiko Kosugi, Masami Tokumitsu, Koichi Murata et al.. 120-GHz Tx/Rx waveguide modules for 10-Gb/s wireless link system[J]. IEEE, 2006, 1-4244-0126-7/06: 25-28

[23] Ho-Jin Song, Naofumi Shimizu, Tomofumi Furuta et al.. Broadband-frequency-tunable sub-terahertz wave generation using an optical comb, AWGs, optical switches, and a uni-traveling carrier photodiode for spectroscopic applications[J]. J. Lightwave Technol., 2008, 26(15): 2521-2530

[24] Akihiko Hirata, Hiroyuki Takahashi, Ryoichi Yamaguchi et al.. Transmission characteristics of 120-GHz-band wireless link using radio-on-fiber technologies[J]. J. Lightwave Technol., 2008, 26(15): 2338-2344

[25] T. Kleine-Ostmann, K. Pierz, G. Hein et al.. Audio signal transmission over THz communication channel using semiconductor modulator[J]. Electron. Lett., 2004, 40(2): 124-126

[26] T. Kleine-Ostmann, P. Dawson, K. Pierz et al.. Room-temperature operation of an electrically driven terahertz modulator[J]. Appl. Phys. Lett., 84(18): 3555-3557

[27] R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz et al.. Concept and perspectives of future ultra broadband THz communication systems[J]. IEEE, 2006, -4244-0400-2/06: 96

[28] N. Krumbholz, K. Gerlach, F. Rutz et al.. Omnidirectional terahertz mirrors: A key element for future terahertz communication systems[J]. Appl. Phys. Lett., 2006, 88: 202905-1-3

[29] Thomas Kurner, Radoslaw Piesiewicz, Martin Koch et al.. Propagation models, measurements and simulations for wireless communication systems beyond 100 GHz[J]. IEEE, 2007, 1-4244-0767-2/07: 108-111

[30] Radoslaw Piesiewicz, Martin Jacob, Joerg Schoebel et al.. Influence of hardware parameters on the performance of future indoor THz communication systems under realistic propagation conditions[J]. EuMA, 2007, 978-2-87487-001-9: 1606-1609

[31] Radoslaw Piesiewicz, Christian Jansen, Daniel Mittleman et al.. Scattering analysis for the modeling of THz communication systems[J]. IEEE Transaction on Antennas and Propagation, 2007, 55(11): 3002-3009

[32] C. Jastrow, K. Munter, R. Piesiewicz et al.. 300 GHz transmission system[J]. Electron. Lett., 2008, 44(3): 213-214

[33] Ibraheem A. Ibraheem, Norman Krumbholz, Daniel Mittleman et al.. Low-dispersive dielectric mirrors for future sireless terahertz communication systems[J]. IEEE Microwave and Wireless components Letters, 2008, 18(1): 67-69

[34] Ibraheem A.Ibraheem, Norman Krumbholz, Daniel Mittleman et al.. Low-dispersive dielectric reflectors for future wireless terahertz communication systems[J]. IEEE Microwave and Wireless Components Letters, 2008, 978-1-4244-1438-3: 930-931

[35] M. Koch. Terahertz applications and techniques[J]. OSA, 2006, 1-55752-830-6

[36] Christian Jansen, Radoslaw Piesiewicz, Daniel Mittleman et al.. The impact of reflections from stratified building materials on the wave propagation in future indoor terahertz communication systems[J]. IEEE Transaction on Antennas and Propagation, 2008, 55(5): 1413-1419

[37] Q. Chen, Z. Jiang, X. C. Zhang. All-optical THz imaging[C]. SPIE, 1999, 3617: 98-105

[38] A. Menikh, R. MacColl, C. A. Mannella et al.. Terahertz biosensing technology: Frontiers and progress[J]. Chem. Phys. Chem., 2002, 3: 655-658

[39] Qi Wu, Xi-Cheng Zhang. Design and characterization of traveling-wave electro-optic terahertz sensors[J]. IEEE J. Sel. Top. Quantum Electron., 1996, 2(3): 693-700

[40] K. Liu, X. Zhang, J. Xu. GaSe crystals for broadband terahertz wave detection[J]. US Patent Appl., 2005, 85(6): 863-865

[41] H. Zhong, J. Xu, X. Xie et al.. Nondestructive defect identification with terahertz time-of-flight tomography[J]. IEEE Sensors Journal, 2005, 5(2): 203-208

[42] N. M. Froberg, B. B. Hu, X. C. Zhang et al.. Terahertz radiation from a photoconducting antenna array[J]. IEEE J. Quantum Electron., 1992, 28(10): 2291-2301

[43] http://www.cas.cn/10000/10003/10000/2009/134952.htm

[44] 王卓, 姚建铨. ZnGeP2晶体差频产生THz波的研究[J]. 科学技术与工程, 2007, 17(13): 3101-3103

    Wang Zhuo,Yao Jian-quan. Research on THz wave created by ZnGeP2 crystal[J]. Science Technology and Engineering, 2007, 17(13): 3101-3103

[45] 姚建铨, 路洋, 张百钢 等. THz辐射的研究和应用新进展[J]. 光电子·激光, 2005, 16(4): 503-507

    Yao Jianquan, Lu Yang, Zhang Baigang et al.. New research progress of THz radiation[J]. J. Optoelectronics·Laser, 2005, 16(4): 503-507

[46] 孙博, 姚建铨. 基于光学方法的太赫兹辐射源[J]. 中国激光, 2006, 33(10): 1349-1359

    Sun Bo, Yao Jianquan. Generation of terahertz wave based on optical methods[J]. Chinese J. Lasers, 2006, 33(10): 1349-1359

[47] Y. Lu, B. G. Zhang, Y. Z et al.. Analysis of surface-emitted terahertz-wave difference frequency generation in slant-stripe-type MgO-doped periodically poled lithium niobate[C]. Conference Digest of the 2006 Joint 31ST International Conference on Infrared and Millimeter Waves and 14TH International Conference on Terahertz Electronics, 2006, 103

[48] T. L. Zhang, X. Y. Zhu, P. Zhao et al.. Widely tunable, dual-signal-wave optical parametric oscillator for terahertz generation by using two periodically poled crystals[C]. Conference Digest of the 2006 Joint 31ST International Conference on Infrared and Millimeter Waves and 14TH International Conference on Terahertz Electronics, 2006, 104

[49] Yuye Wang, Baigang Zhang, Yizhong Yu et al.. Theoretical study of dual-wavelength PPKTP-OPO as a source of DFG THz-wave[J]. Conference Digest of the 2006 Joint 31ST International Conference on Infrared and Millimeter Waves and 14TH International Conference on Terahertz Electronics, 2006, 105

[50] B. Sun, J. Q. Yao, Z. Wang et al.. Study of tunable terahertz-wave generation in isotropic semiconductor crystals based on dual-wavelength KTP-OPO operating near degenerate point[C]. Conference Digest of the 2006 Joint 31ST International Conference on Infrared and Millimeter Waves and 14TH International Conference on Terahertz Electronics, 2006, 107

[51] P. Zhao, B. G. Zhang, Y. Z. Yu et al.. Theoretical investigation of dual-wavelength terahertz wave generation based on slant-stripe-type periodic poled lithium niobate crystal[C]. Conference Digest of the 2006 Joint 31ST International Conference on Infrared and Millimeter Waves and 14TH International Conference on Terahertz Electronics, 2006, 109

[52] H. Liu, D. G. Xu, P. Zhao et al.. Propagation characteristics of two-dimensional photonic crystals in the terahertz range[C]. Conference Digest of the 2006 Joint 31ST International Conference on Infrared and Millimeter Waves and 14TH International Conference on Terahertz Electronics, 2006, 238-238

[53] Huan Liu, Jianquan Yao, Degang Xu et al.. Characteristics of photonic band gaps in woodpile three-dimensional terahertz photonic crystals[J]. Optics Express, 2007, 15(2): 695-703

[54] Liu Huan, Yao Jianquan, Xu Degang et al.. Propagation characteristics of two-dimensional photonic crystals in the terahertz range[J]. Appl. Phys. B-Lasers and Optics, 2007, 87(1): 57-63

[55] Youfu Geng, Xiaoling Tan, Peng Wang et al.. Design of terahertz photonic crystal fiber by finite difference frequency domain method[J]. J. Optics: Pure and Applied Optics, 2007, 9(11): 1019-1023

[56] Liu Huan, Yao Jian-Quan, Zheng Fang-Hua et al.. A novel woodpile three-dimensional terahertz photonic crystal[J]. Chin. Phys. Lett., 2007, 24(5): 1290-1293

[57] 孙博, 姚建铨, 王卓. 利用各向同性半导体晶体差频产生可调谐THz辐射的理论研究[J]. 物理学报, 2007, 56(3): 1390-1396

    Sun Bo, Yao Jianquan, Wang Zhuo et al.. Study of tunable terahertz-wave generation via difference frequency mixing in isotropic semiconductor crystals[J]. Acta Physica Sinica, 2007, 56(3): 1390-1396

[58] 何志红, 姚建铨, 时华锋 等. 光泵重水气体产生THz激光的半经典理论分析[J]. 物理学报, 2007, 56(10): 5802-5807

    He Zhihong, Yao Jianquan, Shi Huafeng et al.. Semiclassical theory of optically pumped D2O gas tera-Hz laser[J]. Acta Physica Sinica, 2007, 56(10): 5802-5807

[59] 何志红, 姚建铨, 时华锋 等. 抽运光强度对光学抽运重水气体产生THz激光的影响分析[J]. 物理学报, 2007, 56(11): 6451-6456

    He Zhihong, Yao Jianquan, Shi Huafeng et al.. Effect of pump laser intensity on optically pumped D2O gas terahertz laser[J]. Acta Physica Sinica, 2007, 56(11): 6451-6456

[60] Yangxiang Bao, Xiao Huang, Zhihong He et al.. Effects of pump source on spectra of optically pumped sub-millimeter wave laser[J]. International J. Infrared and Millimeter Waves, 2006, 27: 1315-1322

[61] Sun Bo, Yao Jianquan, Zhang Baigang et al.. Theoretical study of phase-matching properties for tunable terahertz-wave generation in isotropic nonlinear crystals[J]. Optoelectronic Letters, 2007, 53(2): 152-156

[62] Geng Youfu, Tan Xiaoling, Wang Peng et al.. Transmission loss and dispersion in plastic terahertz photonic band-gap fibers[J]. Apll. Phys. B: Lasers and Optics, 2008, 91(2): 333-336

[63] Li Jiusheng, Yao Jianquan. Novel optical controllable terahertz wave switch[J]. Opt. Commun., 2008, 281(23): 5697-5700

[64] Li Jiusheng, Yao Jianquan. Controllable terahertz wave attenuator[J]. Microwave and Optical Technology Letters, 2008, 50(7): 1810-1812

[65] Geng Youfu, Tan Xiaoling, Zhong Kai et al.. Low loss plastic terahertz photonic band-gap fibers[J]. Chin. Phys. Lett., 2008, 25(11): 3961-3963

[66] Li Jiusheng, Yao Jianquan. Controllable terahertz wave attenuator[J]. Microwave and Optical Technology Letters, 2008, 50(7): 1810-1812

[67] He Zhihong, Yao Jianquan, Ren Xia et al.. Study of optimal gas pressure in optically pumped D2O gas terahertz laser[C]. Proceedings of the Society of Photo-Optical Instrumentation Engineers, 2008, 6840: 84004-84004

[68] 刘欢, 徐德刚, 姚建铨. 基于GaSe和ZnGeP2晶体差频产生可调谐太赫兹辐射的理论研究[J]. 物理学报, 2008, 57(9): 5662-5669

    Liu Huan, Xu Degang, Yao Jianquan. Theoretical study of tunable terahertz radiation based on difference-frequency generation in GaSe and ZnGeP2 crystals[J]. Acta Physica Sinica, 2008, 57(9): 5662-5669

[69] 郑芳华, 刘欢, 李喜福 等. 产生太赫兹辐射源的Nd:YAG双波长准连续激光器[J]. 中国激光, 2008, 35(2): 200-205

    Zheng Fanghua, Liu Huan, Li Xifu et al.. Simultaneous dual-wavelength quasi-continuous-wave laser-diode-end-pumped Nd\:YAG laser for terahertz wave sourse[J]. Chinese J. Lasers, 2008, 35(2): 200-205

[70] 何志红, 姚建铨, 任侠 等. 紧凑型超辐射光泵重气体THz激光器的研制[J]. 光电子·激光, 2008, 19(1): 34-37

    He Zhihong, Yao Jianquan, Ren Xia et al.. Experimental and theoretical research on a compact superradiant optically pumped D2O gas terahertz laser[J]. J. Optoelectronics。 Laser, 2008, 19(1): 34-37

[71] Huang Lei, Sun Bo, Yao Jianquan et al.. Collinear phase-matching study of terahertz-wave generation via difference frequency mixed in GaAs and InP[J]. Optoelectronics Letters, 2008, 4(3): 234-238

[72] Liu Huan, Zheng Fanghua, Yao Jianquan. A simultaneous dual-wavelength diode-end-pumped Nd:YAG laser operating at 1319 nm and 1338 nm: a pumping source for high coherent terahertz generation[C]. 2007 Conference on Lasers and Electro Optics and the Pacific Rim Conference on Lasers and Electro-Optics, 2008, 782-783

[73] He Zhihong, Yao Jianquan, Shi Huafeng et al.. The numerical calculation and analyze of the pulse-laser pumped D2O gas terahertz laser[C]. 2007 Joint 32nd International Conference on Infrared and Millimeter Waves and the 15th International Conference on Terahertz Electronics (IRMMW-THz), 2008, 470-471

[74] 曹铁岭, 姚建铨, 郑义. 基于法布里-珀罗干涉仪的太赫兹波波长测试方法[J]. 光学仪器, 2008, 30(2): 13-16

    Cao Tieling, Yao Jianquan, Zheng Yi. Ways of wavelength mesasurement of terahertz wave based on Fabry-Perot interferometer[J]. Optical Instruments, 2008, 30(2): 13-16

[75] 张振伟, 崔伟丽, 张岩 等. 太赫兹成像技术的实验研究[J]. 红外与毫米波学报, 2006, 25(3): 217-220

    Zhang Zhenwei, Cui Weili, Zang Yang et al.. Terahertz time-domain spectroscopy imaging[J]. J. Infrared and Millimeter Waves, 2006, 25(3): 217-220

[76] Peter H. Siegel. Terahertz technolog[J]. Transactions on microwave theory and theory and techniques, 2002, 50(3): 910-928

[77] Daryoosh Saeedkia, Amir Hamed Majedi, Safieddin Safavi-Naeini et al.. Analysis and design of a photoconductive integrated photo-mixer/antenna for terahertz applications[J]. IEEE J. Quantum Electron., 2005, 41(2): 234-241

[78] D. Saeedkia, R. R. Mansour, S. Safavi-Naeini. The interaction of laser and photoconductor in a continuous-wave terahertz photomixer[J]. IEEE J. Quantum Electron., 2005, 41(9): 1188-1196

[79] Y. M. Zhu, T. Unuma, K. Shibata et al.. Power dissipation spectra and terahertz intervalley transfer gain in bulk GaAs under high electric fields[J]. Appl. Phys. Lett., 2008, 93: 232102

[80] D. Saeedkia, R. R. Mansour, S. Safavi-Naeini. Modeling and analysis of high-temperature superconductive terahertz photo mixers[J]. IEEE Trans. Appl. Super Cond., 2005, 15(3): 3847-385

[81] A. Karpov, D. Miller, F. Rice et al.. Low noise 1.2 THz SIS receiver[C]. in 8th Int. Superconduct. Electron. Conf., 2001, June 19-22: 521-522

[82] M. Kroug, S. Cherednichenko, M. Choumas et al.. HEB quasioptical heterodyne receiver for THz frequencies[C]. Proc. 12th Int. Space Terahertz Technol., 2001, 244

[83] M. C. Gaidis, H. M. Pickett, C. D. Smith et al.. A 2.5 THz receiver frongt-end for spaceborne applications[J]. IEEE Trans-MTT, 2000, 48(4): 733-739

[84] D. Veksler, F. Aniel, S. Rumyantsev et al.. GaN heterodimensional schottky diode for THz detection[J]. IEEE Sensors, 2006, 1-4244-0376-6: 323-326

[85] J. C. Cao, H. C. Liu, C. Y. Song et al.. Terahertz quantum-well photodetector[J]. Appl. Phys. Lett., 2004, 84(20): 4068-4070

[86] 曹俊诚. 太赫兹半导体探测器研究进展[J]. 物理, 2006, 35(11): 953-956

    Cao Juncheng. Terahertz semiconductor detectors[J]. Physics, 2006, 35(11): 953-956

[87] H. Schneider, H. C. Liu. Quantum Well Infrared Photo-Detectors[M]. Berlin Heidelberg New York: Springer, 2006, 45

[88] J. M. Dai, X. Xie, X. C. Zhang. Detection of broadband terahertz waves with a laser-induced plasma in gases[J]. Phys. Rev. Lett., 2006, 97(10): 103903

[89] Chiko Otani1, Ran Nakano2, Tohru Taino2 et al.. Direct and indirect detection of terahertz waves using a Nb-based superconducting tunnel junction[J]. J. Physics, Conference Series 43, 2006: 1303-1306

[90] 冯勇, 张平. 基于Turbo信道编码的H.264视频流的可靠传输研究[J]. 计算机与数字工程, 2009, 37(2): 146-148

    Feng Yong, Zhang Ping. Study on reliable transmission of H.264-encoded video streams based on turbo channel coding[J]. Computer & Digital Engineering, 2009, 37(2): 146-148

[91] B. Park, H. Cheon, C. Kang et al.. A novel timing estimation method for OFDM systems[J]. IEEE Communications Letter, 2003, 7(5): 239-241

[92] W. Shieh, H. Bao, Y. Tang. Coherent optical OFDM: theory and design[J]. Opt. Experess, 2008, 16(2): 841-859

[93] 赵睿, 俞菲, 杨绿溪. 中继辅助协同通信网[J]. 中兴通讯技术, 2008, 14(13): 22-25

    Zhao Rui, Yu Fei, Yang Lüxi. Relay-aided cooperative communication networks[J]. ZTE Communications, 2008, 14(13): 22-25

姚建铨, 迟楠, 杨鹏飞, 崔海霞, 汪静丽, 李九生, 徐德刚, 丁欣. 太赫兹通信技术的研究与展望[J]. 中国激光, 2009, 36(9): 2213. Yao Jianquan, Chi Nan, Yang Pengfei, Cui Haixia, Wang Jingli, Li Jiusheng, Xu Degang, Ding Xin. Study and Outlook of Terahertz Communication Technology[J]. Chinese Journal of Lasers, 2009, 36(9): 2213.

本文已被 30 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!