中国激光, 2013, 40 (12): 1205003, 网络出版: 2013-11-19   

基于改进NSGA-Ⅱ算法的微波/光混合链路中继卫星多目标资源调度算法

Multi-Objective Resources Scheduling Algorithm for Microwave and Laser Hybrid Links Data Relay Satellite Based on Improved NSGA-Ⅱ Algorithm
作者单位
空军工程大学信息与导航学院, 陕西 西安 710077
摘要
针对未来数据中继卫星系统中微波与激光链路并存的发展趋势,研究了具有微波和激光混合链路的中继卫星系统资源调度问题。以可见时间窗口、任务优先级、终端功耗为约束条件,建立了微波/光混合链路中继卫星系统资源调度(ML-DRSSP)的多目标约束规划模型;通过设计自适应交叉、变异算子和基于精英保留的选择算子,改进了非支配排序遗传算法(MNSGA-Ⅱ)并对模型求解。以1颗中继星、4颗用户星、3种资源终端和不同任务规模为条件建立了仿真场景。仿真结果表明该算法在保持解多样性的同时使非劣解集尽可能接近问题的Pareto最优解集,因而能够有效解决具有多任务、多类型天线的ML-DRSSP。
Abstract
According to the developed trend for the combination of microwave and laser links in the future data relay satellite system, the resources scheduling problem in data relay satellite system based on microwave and laser links is studied. A multi-objective constrained programming model for microwave and laser links data relay satellites scheduling problem (ML-DRSSP) is presented under the constraint condition of visible time window, mission priority and power consumption of the terminal. By designing the self-adaptive cross, mutation operator and selection operator based on elitism selection, a modified non-domination sorting genetic algorithm Ⅱis improved and the model is solved. A scene simulation is set up on the conditions of a data relay satellite, four user satellites, three resource terminals and scale of different tasks. The simulation results show that the algorithm, by keeping the solution diversity and making non-inferior solution set close as possible to the Pareto optimal solution set, can solve ML-DRSSP with multi-tasking and multi-type antennas, effectively.
参考文献

[1] 马满好, 邱涤珊, 王亮. 天基信息系统网络拓扑结构建模方法研究[J]. 武汉大学学报, 2009, 34(5): 606-610.

    Ma Manhao, Qiu Dishan, Wang Liang. Modeling topology structure of space-based information system[J]. Geomatics and Information Science of Wuhan University, 2009, 34(5): 606-610.

[2] 盛卫东, 龙云利, 周一宇. 天基光学传感器网络目标定位精度分析[J]. 光学学报, 2011, 31(2): 0228001.

    Sheng Weidong, Long Yunli, Zhou Yiyu. Analysis of target location accuracy in space-based optical-sensor network[J]. Acta Optica Sinica, 2011, 31(2): 0228001.

[3] J Teles, M V Samii, C E Doll. Overview of TDRSS[J]. Adv Space Res, 1995, 16(12): 67-76.

[4] 王家胜. 我国数据中继卫星系统发展建议[J]. 航天器工程, 2011, 20(2): 1-8.

    Wang Jiasheng. Proposal for developing China′s data relay satellite system[J]. Spacecraft Engineering, 2011, 20(2): 1-8.

[5] 赵尚弘, 吴继礼, 李勇军, 等. 卫星激光通信现状与发展趋势[J]. 激光与光电子学进展, 2011, 48(9): 092801.

    Zhao Shanghong, Wu Jili, Li Yongjun, et al.. Present status and developing trends of satellite laser communication[J]. Laser & Optoelectronics Progress, 2011, 48(9): 092801.

[6] 闫爱民, 周煜, 孙建锋, 等. 卫星激光通信复合轴光跟瞄技术及发展[J]. 激光与光电子学进展, 2010, 47(4): 040601.

    Yan Aimin, Zhou Yu, Sun Jianfeng, et al.. Technology and progress of compound-axis pointing in satellite laser communication[J]. Laser & Optoelectronics Progress, 2010, 47(4): 040601.

[7] 刘立人. 卫星激光通信I链路和终端技术[J]. 中国激光, 2007, 34(1): 1-18.

    Liu Liren. Laser communications in space I optical link and terminal technology[J]. Chinese J Lasers, 2007, 34(1): 1-18.

[8] 刘立人. 卫星激光通信Ⅱ地面检测和验证技术[J]. 中国激光, 2007, 34(2): 147-155.

    Liu Liren. Laser communications in space Ⅱ test and verification techniques on the ground[J]. Chinese J Lasers, 2007, 34(2): 147-155.

[9] R J Cesarone, D S Abraham, S Shambayati, et al.. Deep-space optical communications[C]. International Conference on Space Optical Systems and Application, 2011, 8: 410-423.

[10] Tatsuyuki Hanada, Shiro Yamakawa, Hiroki Kohata. Study of optical inter-orbit communication technology for next generation space data-relay satellite[C]. SPIE, 2011, 7923: 79230B.

[11] Knut Bhmer, Mark Gregory, Frank Heine, et al.. Laser communication terminals for the European data relay system[C]. SPIE, 2012, 8246: 82460D.

[12] 赵静, 赵尚弘, 李勇军, 等. 中继卫星资源调度问题研究现状与展望[J]. 电讯技术, 2012, 52(11): 1837-1843.

    Zhao Jing, Zhao Shanghong, Li Yongjun, et al.. A survey on scheduling for TDRS[J]. Telecommunication Engineering, 2012, 52(11): 1837-1843.

[13] Soonmi Han, Seungwoo Beak, Kyuemrae Cho, et al.. Satellite mission scheduling using genetic algorithm[C]. SICE Annual Conference, 2008. 1226-1230.

[14] Dick Stottler. Satellite communication scheduling, optimization, and deconfliction using artificial intelligence techniques[C]. AIAA Infotech@Aerospace Conference, 2010. 1-7.

[15] J Frank, A Jonsson, R Morris, et al.. Planning and scheduling for fleets of earth observing satellites[J]. Proceedings of the 6th International Symposium on Artificial Intelligence, Robotics, Automation and Space, 2001. 1-7.

[16] J Mohammed, D Stottler. Rapid scheduling of multi-tracking sensors for a responsive satellite surveillance network[C]. AIAA Infotech@Aerospace Conference, 2010. 1-12.

[17] S Rojanasoonthon, J Bard. A GRASP for parallel machine scheduling with time windows[J]. INFORMS Journal on Computing, 2005, 17(1): 32-51.

[18] M Yamamoto, T Yoshikawa, T Furuhashi. A study on interactive search in MOGA with island model based on user′s requirements using visualization in NSP[C]. Second World Congress on Nature and Biologically Inspired Computing, 2010. 490-495.

赵静, 赵卫虎, 李勇军, 赵尚弘, 王翔, 韩磊, 李轩. 基于改进NSGA-Ⅱ算法的微波/光混合链路中继卫星多目标资源调度算法[J]. 中国激光, 2013, 40(12): 1205003. Zhao Jing, Zhao Weihu, Li Yongjun, Zhao Shanghong, Wang Xiang, Han Lei, Li Xuan. Multi-Objective Resources Scheduling Algorithm for Microwave and Laser Hybrid Links Data Relay Satellite Based on Improved NSGA-Ⅱ Algorithm[J]. Chinese Journal of Lasers, 2013, 40(12): 1205003.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!