中国激光, 2014, 41 (9): 0905009, 网络出版: 2014-07-22   

混合光子晶体等离子激元纳米微腔

Hybrid Plasmonic Photonic Crystal Nano Micro-Cavity
作者单位
燕山大学电气工程学院, 河北 秦皇岛 066004
摘要
构建了一种三层混合光子晶体等离子体激元结构,分别为金属银(Ag)层,低折射率二氧化硅(SiO2)层和二维光子晶体层。这种混合光子晶体等离子体激元结构具有明显的横磁模(TM)模式带隙。在二维的光子晶体层的中心引入一个单元胞缺陷,形成缺陷腔结构。这种纳米尺度的光子晶体等离子体微腔的体积远小于传统介质的光学微腔,光子能量可以很好地被局域到低折射率层,实现了深亚波长尺度下的对光的限制。通过改变该混合光子晶体等离子激元结构的参数,利用三维时域有限差分(3D-FDTD)方法,分析了这种混合光子晶体等离子微腔结构的光学特性。分析表明:这种纳米微腔具有极小的模式体积0.0141 (λ/n)3和高的Q/V值。
Abstract
A kind of three-tier hybrid plasmonic photonic crystal which is respectively constituted by a metal layer of silver (Ag), a low refractive index dielectric layer of SiO2 and a two-dimensional photonic crystal layer, is proposed. A clear plasmonic transverse-magnetic (TM) bandgap can be formed in this hybrid plasmonic photonic crystal. The defect cavity is constituted by introducing a unit cell defect in the center of the two-dimensional photonic crystal layer. The volume of the hybrid plasmonic photonic crystal micro-cavity is based on nano-scale, which is much less than the conventional optical micro-cavity, and the photon energy is well confined in the low index layer, so light can be limited at deep sub-wavelength scale. With some different structure parameters, the numerical analysis method of three-dimensional finite difference time domain (3D-FDTD) is used to analyze the characteristics of this hybrid plasmonic photonic crystal. The analysis indicated that this kind of nano micro-cavity has an ultra-small mode volume of 0.0141 (λ/n)3 and an ultra-high Q/V.
参考文献

[1] Xiaoling Wang, Naiguang Lv, Qiaofeng Tan, et al.. Investigation of biosensor built with photonic crystal microcavity[J]. Chin Opt Lett, 2008, 6(12): 925-927.

[2] G T Kiehne, A E Kryukov, J B Ketterson. A numerical study of optical second-harmonic generation in a one-dimensional photonic structure[J]. Appl Phys Lett, 1999, 75(12): 1676-1678.

[3] 韩利红, 刘立明, 郭璇, 等. 正方形空气孔L3型光子晶体平板微腔的研究与设计[J]. 光学学报, 2013, 33(11): 1116005.

    Han Lihong, Liu Liming, Guo Xuan, et al.. Research and design of L3 square air holes photonic crystal cavity[J]. Acta Optica Sinica, 2013, 33(11): 1116005.

[4] Y Jie, J. Ding, Jacob B Khurgin. Resonant raman scattering in GaN single crystals and GaN-based heterostructures: feasibility for laser cooling[J]. Chin Opt Lett, 2013, 1(11): 011901.

[5] E Kuramochi, M Notomi, S Mitsugi, et al.. Ultra-high-Q photonic nanocavities realized by the local width modulation of a line defect[J]. Appl Phys Lett, 2006, 88(20): 041112.

[6] M Notomi, E Kuramochi, T Tanabe. Large-scale arrays of ultrahigh-Q coupled nanocavities[J]. Nature Photonics, 2008, 2(12): 741-747.

[7] X Luo, T Ishihara. Surface plasmon resonant interference nanolithography technique[J]. Appl Phys Lett, 2004, 84(23): 4780-4782.

[8] V Georgios, Zhangfu Yu, K Sukru Ekin, et al.. Metal-dielectric-metal plasmonic waveguide devices for manipulating light at the nanoscale[J]. Chin Opt Lett, 2009, 7(4): 302-308.

[9] R M Ma, R F Oulton, V J Sorger, et al.. Room-temperature sub-diffraction-limited plasmon laser by total internal reflection[J]. Nat Mater, 2011, 10(2): 110-113.

[10] Luo Xin, Zou Xihua, Wen Kunhua, et al.. Narrow-band filter of surface plasmon based on dual-section metal-insulator-metal structure[J]. Acta Optica Sinica, 2013, 33(11): 1123003.

[11] 冯琛, 冯国英, 周昊, 等. 一维光子带隙光子晶体激光腔的特性分析[J]. 中国激光, 2013, 39(8): 0802009.

    Feng Chen, Feng Guoying, Zhou Hao, et al.. Characteristic analysis on photonic crystal laser cavity with one-dimensional photonic bandgap[J]. Chinese J Lasers, 2012, 39(8): 0802009.

[12] A Mizrahi, V Lomakin, B A Slutsky, et al.. Low threshold gain metal coated laser nanoresonators[J]. Opt Lett, 2008, 33(11): 1261-1263.

[13] P Xu, Q Huang, Y Shi. Silicon hybrid plasmonic Bragg grating reflectors and high Q-factor micro-cavities[J]. Optics Communications, 2013, 289: 81-84.

[14] P Xu, K Yao, J Zheng, et al.. Slotted photonic crystal nanobeam cavity with parabolic modulated width stack for refractive index sensing[J]. Opt Express, 2013, 21(22): 26908-26913.

[15] X Yang, A Ishikawa, X Yin, et al.. Hybrid photonic plasmonic crystal nanocavities[J]. ACS Nano, 2011, 5(4): 2831-2838.

[16] P B Deotare, M W McCutcheon, I W Frank, et al.. High quality factor photonic crystal nanobeam cavities[J]. Appl Phys Lett, 2009, 94(12): 121106.

童凯, 张振国, 卢建如, 李汉卿, 高鹏耀. 混合光子晶体等离子激元纳米微腔[J]. 中国激光, 2014, 41(9): 0905009. Tong Kai, Zhang Zhenguo, Lu Jianru, Li Hanqing, Gao Pengyao. Hybrid Plasmonic Photonic Crystal Nano Micro-Cavity[J]. Chinese Journal of Lasers, 2014, 41(9): 0905009.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!