中国激光, 2016, 43 (6): 0605002, 网络出版: 2016-06-06   

分数阶高阶贝塞尔涡旋光束的矢量波分析法研究

Properties Study of the Fractional Order High Order Bessel Vortex Beam Using Vector Wave Analysis
作者单位
1 河南科技大学物理工程学院, 河南 洛阳 471023
2 河南科技大学化工与制药学院, 河南 洛阳 471023
3 新加坡南洋理工大学数学物理学院, 新加坡 637371
4 中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室, 陕西 西安 710119
摘要
利用矢量波分析法对分数阶高阶贝塞尔涡旋光束(FBV)的电矢量特性进行了研究。在紧聚焦和非紧聚焦条件下,研究了拓扑荷(TCs)增量为0.1阶、拓扑荷从2.1增到3的过程中,Ex、Ey、Ez三个电场分量强度图的变化情况。进而对比分析了TCs值为整数阶和半整数阶FBV光束在由紧聚焦向非紧聚焦过渡过程中Ex分量强度的变化情况。数值模拟结果表明,紧聚焦和非紧聚焦情况下,三个分量的电场强度分布差异较大,其亮环圆对称性均遭到破坏;非紧聚焦情况下,Ex分量的圆对称性增强,而Ey、Ez分量与紧聚焦条件下的光强分布基本相同;在由紧聚焦向非紧聚焦过渡过程中,Ex分量整数阶TCs光束亮环圆对称性逐渐增强,而半整数阶TCs光束亮环结构基本不变,仅存在缩放关系。
Abstract
The electric vector feature of fractional high-order Bessel vortex beam (FBV) is studied based on the vector wave analysis. Under the tightly focused and non-tightly focused conditions, the changes of three electric-field components of Ex, Ey and Ez are studied with the topological charges (TCs) from 2.1 to 3 in the increment of 0.1. Moreover, the Ex component of the FBV beam with integer and half integer TCs are comparatively analyzed during the process of the imaging scheme from tightly focused to non-tightly focused conditions. Numerical simulation results show that there are obvious difference within the three electric-field components and the circular symmetry of the bright rings are all broken. Under the non-tightly focused conditions, the circular symmetry of Ex component intensity increases. However, the distribution of Ey and Ez components demonstrate same with that under the tightly focused conditions. The circular symmetry of the Ex component of integer TCs bright rings gradually increased during the process of the imaging scheme from tightly focused to non-tightly focused conditions. Different with those, the formation of the half-integer TCs bright rings patterns remain unchanged and only has a magnification velationship.
参考文献

[1] Nye J F, Berry M V. Dislocations in wave trains[J]. Proc R Soc London Ser A-Math Phys Eng Sci, 1974, 336(1605): 165-190.

[2] Molina-Terriza G, Torres J P, Torner L. Twisted photons[J]. Nature Physics, 2007, 3(5): 305-310.

[3] Bozinovic N, Yue Y, Ren Y, et al.. Terabit-scale orbital angular momentum mode division multiplexing in fibers[J]. Science, 2013, 340(6140): 1545-1548.

[4] Grier D G. A revolution in optical manipulation[J]. Nature, 2003, 424(6950): 810-816.

[5] Tao S, Yuan X C, Lin J, et al.. Fractional optical vortex beam induced rotation of particles[J]. Optics Express, 2005, 13(20): 7726-7731.

[6] Ng J, Lin Z, Chan C T. Theory of optical trapping by an optical vortex beam[J]. Physical Review Letters, 2010, 104(10): 103601.

[7] Crabtree K, Davis J A, Moreno I. Optical processing with vortex-producing lenses[J]. Applied Optics, 2004, 43(6): 1360-1367.

[8] Sharma M K, Joseph J, Senthilkumaran P. Selective edge enhancement using shifted anisotropic vortex filter[J]. Journal of Optics, 2013, 42(1): 1-7.

[9] Pan Y, Jia W, Yu J, et al.. Edge extraction using a time-varying vortex beam in incoherent digital holography[J]. Optics Letters, 2014, 39(14): 4176-4179.

[10] Li X, Tai Y, Nie Z, et al.. Digital speckle correlation method based on phase vortices[J]. Optical Engineering, 2012, 51(7): 077004.

[11] Li X, Tai Y, Zhang L, et al.. Characterization of dynamic random process using optical vortex metrology[J]. Applied Physics B, 2014, 116(4): 901-909.

[12] Liu R, Gu B Y. Generation of the high-order Bessel beams by diffractive phase elements[J]. Optik, 1999, 110(2): 71-76.

[13] Arlt J, Dholakia K. Generation of high-order Bessel beams by use of an axicon[J]. Optics Communications, 2000, 177(1-6): 297-301.

[14] Mitri F G. Three-dimensional vectorial analysis of an electromagnetic non-diffracting high-order Bessel trigonometric beam[J]. Wave Motion, 2012, 49(5): 561-568.

[15] 吴平辉, 黄文华. 准贝塞尔光束在激光微加工中的理论分析[J]. 中国激光, 2014, 41(s1): s102002.

    Wu Pinghui, Huang Wenhua. Theoretical analysis of quasi-Bessel beam for laser micromachining[J]. Chinese J Lasers, 2014, 41(s1): s102002.

[16] 余文愫, 覃亚丽, 任宏亮, 等. 贝塞尔晶格中环状涡旋孤子的研究[J]. 光学学报, 2014, 34(7): 0719001.

    Yu Wensu, Qin Yali, Ren Hongliang, et al.. Research on ring-like vortex solitons in Bessel lattices[J]. Acta Optica Sinica, 2014, 34(7): 0719001.

[17] 张霞, 宿晓飞, 张磊, 等. 折射率环状分布光纤中基于高阶贝塞尔函数的轨道角动量模式分析[J]. 中国激光, 2014, 41(12): 1205002.

    Zhang Xia, Su Xiaofei, Zhang Lei, et al.. Analysis of orbital angular momentum modes based on high-order Bessel functions in optical fiber of ring refractive index distribution[J]. Chinese J Lasers, 2014, 41(12): 1205002.

[18] 孙川, 何艳林, 陈婧, 等. 线性径向梯度折射率透镜产生贝塞尔光[J]. 中国激光, 2015, 42(8): 0802002.

    Sun Chuan, He Yanlin, Chen Jing, et al.. Bessel beam generated by linear radial gradient-index lens[J]. Chinese J Lasers, 2015, 42(8): 0802002.

[19] 周钊贤, 胡明列, 周雨竹, 等. 光子晶体光纤直接产生超连续贝塞尔光束[J]. 中国激光, 2015, 42(3): 0302001.

    Zhou Zhaoxian, Hu Minglie, Zhou Yuzhu, et al.. Broadband spectrum Bessel beams directly output from a photonic crystal fiber[J]. Chinese J Lasers, 2015, 42(3): 0302001.

[20] Berry M V. Optical vortices evolving from helicoidal integer and fractional phase steps[J]. Journal of Optics A: Pure and Applied Optics, 2004, 6(2): 259-268.

[21] Leach J, Yao E, Padgett M J. Observation of the vortex structure of a non-integer vortex beam[J]. New Journal of Physics, 2004, 6(1): 71.

[22] Li X, Tai Y, Lv F, et al.. Measuring the fractional topological charge of LG beams by using interference intensity analysis[J]. Optics Communications, 2015, 334: 235-239.

[23] Molchan M A, Doktorov E V, Vlasov R A. Propagation of vector fractional charge Laguerre-Gaussian light beams in the thermally nonlinear moving atmosphere[J]. Optics Letters, 2010, 35(5): 670-672.

[24] Dai H T, Liu Y J, Luo D, et al.. Propagation properties of an optical vortex carried by an Airy beam: Experimental implementation[J]. Optics Letters, 2011, 36(9): 1617-1619.

[25] Petrov N V, Pavlov P V, Malov A N. Numerical simulation of optical vortex propagation and reflection by the methods of scalar diffraction theory[J]. Quantum Electron, 2013, 43(6): 582-587.

[26] Gutiérrez-Vega J C, López-Mariscal C. Nondiffracting vortex beams with continuous orbital angular momentum order dependence[J]. Journal of Optics A: Pure and Applied Optics, 2008, 10(1): 015009.

[27] López-Mariscal C, Burnham D, Rudd D, et al.. Phase dynamics of continuous topological upconversion in vortex beams[J]. Optics Express, 2008, 16(15): 11411-11422.

[28] Mitri F G. Vector wave analysis of an electromagnetic high-order Bessel vortex beam of fractional type α: Erratum[J]. Optics Letters, 2013, 38(5): 615-615.

[29] Mitri F G. High-order Bessel nonvortex beam of fractional type α[J]. Physical Review A, 2012, 85(2): 025801.

[30] Lax M, Louisell W H, McKnight W B. From Maxwell to paraxial wave optics[J]. Physical Review A, 1975, 11(4): 1365-1370.

[31] Davis L W. Theory of electromagnetic beams[J]. Physical Review A, 1979, 19(3): 1177-1179.

[32] Pattanayak D N, Agrawal G P. Representation of vector electromagnetic beams[J]. Physical Review A, 1980, 22(3): 1159-1164.

[33] Jesus-Silva A J, Fonseca E J S, Hickmann J M. Study of the birth of a vortex at Fraunhofer zone[J]. Optics Letters, 2012, 37(21): 4552-4554.

[34] Mitri F G. Three-dimensional vectorial analysis of an electromagnetic non-diffracting high-order Bessel trigonometric beam[J]. Wave Motion, 2012, 49(5): 561-568.

李新忠, 台玉萍, 李贺贺, 王静鸽, 聂兆刚, 汤洁, 王辉, 尹传磊. 分数阶高阶贝塞尔涡旋光束的矢量波分析法研究[J]. 中国激光, 2016, 43(6): 0605002. Li Xinzhong, Tai Yuping, Li Hehe, Wang Jingge, Nie Zhaogang, Tang Jie, Wang Hui, Yin Chuanlei. Properties Study of the Fractional Order High Order Bessel Vortex Beam Using Vector Wave Analysis[J]. Chinese Journal of Lasers, 2016, 43(6): 0605002.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!