中国激光, 2021, 48 (2): 0202002, 网络出版: 2021-01-07   

超疏水聚偏氟乙烯的激光加工 下载: 1516次特邀综述

Laser Processing of Polyvinylidene Fluoride with Superhydrophobicity
作者单位
1 吉林大学电子科学与工程学院集成光电子学国家重点实验室, 吉林 长春 130012
2 清华大学精密仪器系精密测试技术及仪器国家重点实验室, 北京 100084
摘要
以激光加工工艺为基础,仿照荷叶超疏水表面对聚偏氟乙烯薄膜进行加工,实现了具有微结构、低表面能的超疏水聚偏氟乙烯表面,该方法简便且不涉及化学试剂。实验结果表明,激光处理后的聚偏氟乙烯薄膜表面具有类似荷叶表面的微乳突结构,碳元素与氟元素的含量(原子数分数)比由1.2提高至11.5。聚偏氟乙烯薄膜的水滴接触角约为82°,激光处理过的聚偏氟乙烯薄膜的水滴接触角约为150°,这表明经激光处理后的聚偏氟乙烯材料具有超疏水特点。
Abstract

Objective Various bioinspired surfaces about super-wettability have been widely investigated. For example, water droplets move freely on the lotus leaf surface, in an anisotropic way on rice leaf surfaces, and unidirectionally on pitcher surfaces. With the progress of science and technology, the mechanisms for these bioinspired surfaces have been revealed. Importantly, bioinspired surfaces have abroad applications in biological, industrial, micromechanical, and other fields. For example, superhydrophobic surfaces, requiring high roughness and low surface energy, show self-cleaning and anti-icing characteristics. From the view of materials, organic polymer materials have lower surface energy than other materials, showing great potential in developing superhydrophobic surfaces. As a typical polymer material, polyvinylidene fluoride (PVDF) shows excellent flexibility, chemical corrosion resistance, and piezoelectricity. Superhydrophobic PVDF has recently been prepared by various methods, such as hybrid modification and surface chemistry modification. However, these methods require special chemical reagents or complicated equipment. Herein, we designed and fabricated PVDF-based membranes with superhydrophobicity by laser processing technology. After the laser treatment, the laser treated-PVDF (L-PVDF) surface owns microstructures and low surface energy. Therefore, the L-PVDF surface shows superhydrophobicity. This work provides a new method to prepare the PVDF membrane with excellent superhydrophobicity.

Methods powders and N, N—dimethylformamide (DMF) solvent are mixed in the ratio of 1 g∶8ml. After ultrasonic treatment for 1h, the PVDF powder is uniformly dispersed. The PVDF@DMF solution is drop-coated on substrates to fabricate PVDF membranes. As for the preparation of L-PVDF surfaces, a continuous semiconductor laser wavelength (λ=450nm, power P=1200mW) is used. After the laser treatment, the L-PVDF surface shows superhydrophobic characteristc. The morphologies of lotus leaf, PVDF, and L-PVDF surfaces are measured by a confocal laser scanning microscope (CLSM) and a scanning electron microscope (SEM). The chemical compositions of the PVDF and L-PVDF are analyzed by X-ray photoelectron spectroscopy (XPS). The surface wettability and wettability stability of the PVDF and L-PVDF are characterized by a static contact angle (CA) measuring system. For the CA measurement, the area of laser treatment is 10mm×10mm, and the processing time is about 3min.

Results and Discussion The static CA of water drops on a lotus leaf is ~150°, indicating superhydrophobic characteristic. To explore the mechanism of the superhydrophobic characteristic of water droplets on the lotus leaf surface, we characterized the lotus leaf surface morphology by the CLSM and SEM, respectively. There are microscaled papillae with a diameter of 3--5μm and a height of 5--10μm (Fig. 1). The existence of microscaled papillae can effectively reduce the contact area between water droplets and lotus leaf surfaces, leading to the superhydrophobic effect. Fig. 2 shows the laser processing system and the procedure of laser processing PVDF surface. The SEM images show that there are grooves along the laser scanning path. The distance between grooves is ~100μm, and the width is ~70μm. Moreover, many particles (diameter is ~ 1μm) are observed. The size and shape of particles are similar to the papillae on a lotus leaf (Fig. 3). Besides, XPS is performed to investigate the change of surface composition of PVDF and L-PVDF surface. The C/F atom ratio has significantly changed from 1.2 (PVDF) to 11.5 (L-PVDF), which indicates that the molecular chain of PVDF is destroyed by high laser power, and defluorination may occur (Fig. 4). Compared with the CA of PVDF film (~ 82°), the L-PVDF surface shows hydrophobicity with a CA of ~ 150°(Fig. 5).

Conclusions Inspired by the microstructures on the lotus leaf surfaces, a L-PVDF-based superhydrophobic surface has been prepared by a continuous semiconductor laser (λ=450nm, P=1200mW). CLSM and SEM are used to characterize the microstructure of L-PVDF. Grooves and microscaled papillae are induced fabrication by the laser thermal effect. The microstructures on the surface of L-PVDF is similar to that of the lotus leaf surface. Besides, the rough structure reduces the contact area between water droplets and the L-PVDF surface. XPS reveals that the C/F atom ratio on the surface increased from 1.2 (PVDF) to 11.5 (L-PVDF). Therefore, the CA of L-PVDF is mainly dependent on the change of microstructures and composition. The static CA on the L-PVDF surface is ~150°. This work shows the fabrication of superhydrophobic L-PVDF films by laser processing. The laser processing is simple and does not involve chemical reagents. We deem that this method provides a new strategy to prepare a PVDF-based superhydrophobic surface.

1 引言

自然界中存在着各种各样的奇妙现象,如水滴在荷叶表面自由滚动、水滴在水稻叶表面各向异性滚动、水滴在猪笼草口缘区单向运动现象[1-2]。随着科学技术的发展,近年来对特异浸润性表面的研究也受到了人们的关注,并在日常生活、工业生产等领域产生了巨大的经济价值。如超疏水表面具有自清洁性、抗结冰性等特点,已被广泛应用于生物、工业、微机械等领域[3]

固体表面的超疏水性质通常与表面微纳结构和化学组分有关[4-7]。一方面,表面微纳结构可以减小水滴与固体表面的接触面积,提高疏水性能,常用模板法、光刻、电镀、自组装、化学腐蚀等工艺在固体表面引入微纳结构。另一方面,通过化学试剂改变材料表面的化学组分,可降低材料表面能,提高疏水性能。从制备方法角度来看,激光加工技术具有易于控制、精度高等优点[8-10],被广泛应用于多种结构和器件的制备[11-17]。且激光加工技术具有良好的适用性[18-21],不论是硬质材料还是柔性材料,都可以通过调控激光加工参数制备特定微纳结构和表面改性[22-25]

有机材料的表面能较低,因此超疏水有机材料的制备成为超疏水领域研究的热点。如Yuan等[26]以芋头叶为模板,制备出具有与天然芋头叶乳突类似的聚苯乙烯膜,表面的水滴接触角为158°±1.6°;Oktay等[27]通过静电纺丝技术制备出基于聚酰亚胺硅氧烷复合材料的电纺薄膜,薄膜表面显示出与荷叶相似的超疏水性,可作为自清洁薄膜;Gong等[28]创新性地将聚二甲硅氧烷(PDMS)倒入激光烧蚀出的不锈钢板中固化,得到静态接触角可达155°的超疏水PDMS薄膜;Wang等[29]用激光直接处理PDMS表面,使PDMS发生碳化,碳化后的表面具有超疏水性。

聚偏氟乙烯(PVDF)是一种常见的有机高分子共聚物,具有良好的柔性、耐腐蚀性、压电性等优点[30]。迄今为止,共混改性、表面处理改性等方式已被用于制备基于PVDF的超疏水表面,但通常需要特殊的化学试剂或复杂的工艺设备[31-34]。针对上述问题,本文提出以激光加工技术为基础,仿荷叶的超疏水表面对PVDF薄膜进行加工,实现了具有微结构、低表面能的超疏水聚偏氟乙烯,处理过程简便且不涉及化学试剂。

2 实验部分

2.1 实验材料及设备

PVDF粉末材料购买于Sigma-Aldrich公司,N,N—二甲基甲酰胺(DMF)购买于上海阿拉丁生化科技股份有限公司,用于PVDF粉末的溶解及成膜。激光器为半导体连续激光器,波长为450nm,焦距为50mm,光斑直径约为70μm,采用单向线扫描方式,扫描速度为3mm/s,最大输出功率为3000mW。研究不同激光功率处理PVDF表面对疏水性能的影响时,采用不用激光功率(300,600,900,1200,1500,1800,2100,2400,2700mW)对薄膜表面进行激光处理,得到激光处理过的PVDF薄膜材料(L-PVDF)。激光处理的面积为10mm×10mm,加工时间约为3min,用于静态接触角(CA)测试。用静态接触角测试仪(SDC-350,SIN DIN Corporation)测量薄膜材料表面的水滴静态接触角,液体体积为6 μL。采用激光共聚焦显微镜(CLSM,OLS4100)、冷场发射扫描电子显微镜(SEM,JSM-7500)对表面结构进行观察,用X射线光电子能谱(XPS,ESCALAB 250 spectrometer)测试样品表面元素的变化情况。

2.2 PVDF薄膜以及超疏水PVDF薄膜的制备

将PVDF粉末与DMF溶剂按照1 g∶8mL的比例进行混合,搅拌至粉末溶于液体后,放置于超声清洗机中进行超声处理(1h),使PVDF粉末分散更均匀,同时去除混合过程中引入的气泡,得到流动性、成膜性较好的均匀混合物。

将混合物滴在玻璃基底上,混合物在温度为80 ℃时热烘干处理10~15min后成膜。通过SEM观察,制备的PVDF薄膜厚度约为17μm。将PVDF薄膜放置于半导体连续激光器的加工区域,在合适的功率下对薄膜表面进行激光处理,得到L-PVDF材料,加工区域的大小根据需求面积设置。同时对未加工的PVDF薄膜也进行裁剪,得到相同面积(10mm×10mm)的PVDF薄膜材料,用于实验测试、对比分析。

3 分析与讨论

3.1 荷叶表面形貌观察

图1(a)所示,水滴可以在荷叶表面自由滚动。利用静态接触角测试仪测试荷叶表面水滴的接触角,发现荷叶的水滴静态接触角可达150°,具有超疏水特点,如图1(b)所示。为进一步探究荷叶表面的超疏水特点,分别采用CLSM和SEM对荷叶表面进行观察分析。图1(c)为荷叶表面的CLSM图像,可以发现,荷叶表面存在许多直径不超过10μm、高为5~10μm的乳突。图1(d)、图1(e)为荷叶表面的SEM图像,可以发现,荷叶表面具有直径约为3~5μm的乳突。乳突的存在可以有效减少水滴与荷叶表面的接触面积,达到超疏水效果[35-36]

图 1. 荷叶疏水性能的测试。(a)实物图;(b)静态接触角;(c) CLSM图像;(d) SEM图像(50μm);(e) SEM图像(10μm)

Fig. 1. Test of the hydrophobicity of lotus leaf. (a) Photograph; (b) static contact angle; (c) CLSM image; (d) SEM image (50μm); (e) SEM image (10μm)

下载图片 查看所有图片

3.2 PVDF与L-PVDF表面形貌对比

图2(a)、图2(b)分别为激光加工系统和激光处理PVDF材料表面的加工流程示意图。首先,将PVDF液体滴在玻璃基底表面,烘干成膜后将PVDF薄膜放置在位移台上,控制位移台使激光在PVDF表面进行单向线扫描,激光功率为1200mW。然后,采用CLSM观察PVDF与L-PVDF薄膜表面。图2(c)为PVDF薄膜的表面形貌图像,PVDF薄膜通过自身流动性摊开及烘干得到,烘干过程中,DMF挥发留下PVDF成膜,因此表面有一定的起伏感。图2(d)为L-PVDF薄膜的表面形貌。与图2(c)相比,激光加工过程将原来的表面破坏,激光沿着其扫描路径留下沟槽;同时由于激光的光热效应,使沟槽周围区域形貌也变得粗糙。沟槽和沟槽周围/表面粗糙的结构有利于减少L-PVDF表面和水滴的接触面积。

图 2. PVDF的激光加工处理。(a)激光加工系统;(b)激光处理PVDF的示意图;(c)PVDF薄膜的表面;(d)L-PVDF薄膜表面

Fig. 2. Laser processing of PVDF. (a) Laser processing system; (b) schematic diagram of laser processing PVDF; (c) surface of PVDF film; (d) surface of L-PVDF film

下载图片 查看所有图片

用SEM对PVDF和L-PVDF薄膜表面结构进行观察分析,结果如图3所示。图3(a)、图3(b)为PVDF薄膜表面的SEM图像,可以发现,薄膜表面存在小孔、凹陷等不规则结构,原因是DMF溶剂的挥发。图3(c)~图3(f)为L-PVDF薄膜的SEM图像,从图3(c)可以观察到明显的线性扫描路径,沟槽间距约为100μm,沟槽宽度约为70μm。图3(d)为沟槽内部的放大图,可以观察到L-PVDF材料沟槽内部也存在粗糙结构。图3(e)、图3(f)为L-PVDF薄膜表面大量的颗粒状物体,尺寸约为1μm,这些颗粒与荷叶表面的乳突尺寸接近(荷叶表面的乳突直径约为3~5μm),且处于同一量级。但L-PVDF表面的凸起更紧凑,有利于提高粗糙度。因此,在微纳结构方面,L-PVDF薄膜具有类似荷叶表面的结构,使L-PVDF薄膜具有与荷叶类似的疏水性质。

图 3. PVDF及L-PVDF薄膜表面的SEM图像。 (a)~(b) PVDF薄膜;(c)~(f) L-PVDF薄膜

Fig. 3. SEM images of the surface of PVDF and L-PVDF films. (a)--(b) PVDF films; (c)--(f) L-PVDF films

下载图片 查看所有图片

3.3 PVDF与L-PVDF的成分对比

材料表面的浸润性主要由微纳结构和化学组分两部分决定。为了详细分析经激光处理前后PVDF的表面组分变化,分别对PVDF和L-PVDF进行XPS测试。PVDF薄膜表面的碳元素含量(原子数分数)约为52.27%,氟元素含量约为47.24%,碳元素与氟元素含量的比值为1.2,如图4(a)所示(1s为原子中1s轨道电子被激发测得的光电子能量)。而L-PVDF薄膜表面的碳元素含量约为86.84%,氟元素含量约为7.54%,碳元素与氟元素含量的比值为11.5,如图4(b)所示。这表明经过激光处理后,L-PVDF表面具有更多的碳元素含量,氟含量减少。进一步分析PVDF和L-PVDF材料薄膜的C1s谱图,结果如图4(c)、图4(d)所示。可以发现,PVDF的C1s包含两个强度大致相同的主峰,分别为—CF2—(结合能为289.1 eV)和—CH2—(结合能为284.6eV),符合PVDF的主要化学结构。激光处理后,PVDF位于289.1eV的峰(主要代表为—CF2—)明显降低,这表明C—F键发生断裂,即PVDF材料的分子链结构被激光破坏,碳元素与氟元素含量的比值由1.2提高至11.5[37-40]

图 4. PVDF的XPS谱图。(a) PVDF薄膜;(b) L-PVDF薄膜表面的XPS宽谱图;(c) PVDF薄膜;(d) L-PVDF薄膜表面的C1s谱图

Fig. 4. XPS spectrum of PVDF. (a) PVDF film; (b) XPS broad spectrum of L-PVDF film surface; (c) PVDF film; (d) C1s spectrum of L-PVDF film surface

下载图片 查看所有图片

3.4 PVDF与L-PVDF表面疏水性能的对比

图5为接触角测量仪对PVDF和L-PVDF薄膜表面水滴静态接触角的测量结果,图5(a)为不同激光功率处理后L-PVDF薄膜表面的水滴静态接触角,图5(b)为用半导体连续激光器处理后L-PVDF薄膜表面的水滴静态接触角。用不同激光功率(300~2700mW,间隔为300mW)对PVDF薄膜进行处理,结果表明,当激光功率小于1200mW时,激光并未对PVDF薄膜产生作用;当激光功率大于1200mW时,激光在PVDF薄膜上加工出与图3(c)一致的结构。对这些样品进行了疏水性能测试,得到的水滴静态接触角约为150°,可以认为疏水性能基本一致。L-PVDF的生成需要一定的能量值,且在能量大于PVDF发生改性的激光功率阈值后生成的L-PVDF薄膜具有相似的结构,导致不同加工功率下形成的L-PVDF薄膜具有大致相同的水滴静态接触角。从加工完整性方面考虑,较强的能量有可能破坏膜上引入的类荷叶表面结构。因此,在疏水性能基本一致的情况下,选择功率为1200mW的激光制备的L-PVDF薄膜,并进行实验与测试。图5(b)为稳定性实验的结果,分别对PVDF以及L-PVDF薄膜进行了10次水滴静态接触角的测量。可以发现,L-PVDF薄膜表面的水滴静态接触角基本没有变化,稳定在150°附近,这表明激光加工PVDF薄膜可以形成具有稳定微纳结构的超疏水表面。

图 5. 静态接触角的测试。(a)不同加工功率下的表面静态接触角;(b) 表面静态接触角的稳定性测试

Fig. 5. Test of the static contact angle. (a) Surface static contact angle under different processing power; (b) stability test of the surface static contact angle

下载图片 查看所有图片

4 结论

受荷叶微观表面的启发,用波长为450nm的半导体连续激光对PVDF表面进行加工,结果表明,L-PVDF表面的水滴静态接触角可达到150°,具有很好的超疏水性质。同时连续对L-PVDF进行静态接触角测试,结果都稳定在150°附近,具有很好的稳定性。通过CLSM和SEM对薄膜的微观结构进行表征,结果表明,激光扫描路径形成的沟槽以及激光热效应形成的微小颗粒状结构使L-PVDF表面具有与荷叶表面类似的粗糙结构,这种结构减小了水滴与表面的接触面积。结合XPS分析得到的结果表明,激光处理前后,材料表面碳元素与氟元素含量的比值由1.2提高至11.5。采用激光加工制备PVDF超疏水表面的方法高效便捷,处理过程简便且不涉及化学试剂,为制备PVDF超疏水表面提供了新思路。

参考文献

[1] 龙江游, 范培迅, 龚鼎为, 等. 超快激光制备具有特殊浸润性的仿生表面[J]. 中国激光, 2016, 43(8): 0800001.

    Long J Y, Fan P X, Gong D W, et al. Ultrafast laser fabricated bio-inspired surfaces with special wettability[J]. Chinese Journal of Lasers, 2016, 43(8): 0800001.

[2] Liu M J, Wang S T, Jiang L. Nature-inspired superwettability systems[J]. Nature Reviews Materials, 2017, 2: 17036.

[3] 张径舟, 陈烽, 雍佳乐, 等. 飞秒激光诱导仿生超疏水材料表面的研究进展[J]. 激光与光电子学进展, 2018, 55(11): 110001.

    Zhang J Z, Chen F, Yong J L, et al. Research progress on bioinspired superhydrophobic surface induced by femtosecond laser[J]. Laser & Optoelectronics Progress, 2018, 55(11): 110001.

[4] Wang S, Liu K, Yao X, et al. Bioinspired surfaces with superwettability:new insight on theory, design, and applications[J]. Chemical Reviews, 2015, 115(16): 8230-8293.

[5] Han D D, Zhang Y L, Jiang H B, et al. Moisture-responsive graphene paper prepared by self-controlled photoreduction[J]. Advanced Materials, 2015, 27(2): 332-338.

[6] Wang L, Chen Q D, Cao X W, et al. Plasmonic nano-printing:large-area nanoscale energy deposition for efficient surface texturing[J]. Light: Science & Applications, 2017, 6(12): e17112.

[7] Yang J, Luo F F, Kao T S, et al. Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing[J]. Light: Science & Applications, 2014, 3(7): e185.

[8] Sugioka K, Cheng Y. Ultrafast lasers-reliable tools for advanced materials processing[J]. Light: Science & Applications, 2014, 3(4): e149.

[9] You R, Liu Y Q, Hao Y L, et al. Laser fabrication of graphene-based flexible electronics[J]. Advanced Materials, 2020, 32(15): 1901981.

[10] 史杨, 许兵, 吴东, 等. 飞秒激光直写技术制备功能化微流控芯片研究进展[J]. 中国激光, 2019, 46(10): 1000001.

    Shi Y, Xu B, Wu D, et al. Research progress on fabrication of functional microfluidic chips using femtosecond laser direct writing technology[J]. Chinese Journal of Lasers, 2019, 46(10): 1000001.

[11] Wu D, Xu J, Niu L G, et al. In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting[J]. Light: Science & Applications, 2015, 4(1): e228.

[12] Han D D, Zhang Y L, Ma J N, et al. Light-mediated manufacture and manipulation of actuators[J]. Advanced Materials, 2016, 28(38): 8328-8343.

[13] Zhang Y L, Liu Y Q, Han D D, et al. Quantum-confined-superfluidics-enabled moisture actuation based on unilaterally structured graphene oxide papers[J]. Advanced Materials, 2019, 31(32): 1901585.

[14] Fu XY, Chen ZD, Han DD, et al. Laser fabrication of graphene-based supercapacitors[J]. Photonics Research, 2020( 4): 577- 588.

[15] Han D D, Chen Z D, Li J C, et al. Airflow enhanced solar evaporation based on Janus graphene membranes with stable interfacial floatability[J]. ACS Applied Materials & Interfaces, 2020, 12(22): 25435-25443.

[16] 韩冬冬, 蔡青, 李纪超, 等. 激光诱导石墨烯水下超疏油仿生表面的制备[J]. 激光与光电子学进展, 2020, 57(15): 151408.

    Han D D, Cai Q, Li J C, et al. Preparation of laser induced graphene based underwater superoleophobic bionic surface[J]. Laser & Optoelectronics Progress, 2020, 57(15): 151408.

[17] 姜源, 江毅, 张柳超, 等. 基于飞秒激光加工的无膜光纤气体压力传感器[J]. 激光与光电子学进展, 2019, 56(10): 100601.

    Jiang Y, Jiang Y, Zhang L C, et al. Non-diaphragm fiber gas pressure sensor based on femtosecond laser machining[J]. Laser & Optoelectronics Progress, 2019, 56(10): 100601.

[18] Zou T T, Zhao B, Xin W, et al. High-speed femtosecond laser plasmonic lithography and reduction of graphene oxide for anisotropic photoresponse[J]. Light: Science & Applications, 2020, 9: 69.

[19] Li Z Z, Wang L, Fan H, et al. O-FIB: far-field-induced near-field breakdown for direct nanowriting in an atmospheric environment[J]. Light:Science & Applications, 2020, 9: 41.

[20] Salter P S, Booth M J. Adaptive optics in laser processing[J]. Light, Science & Applications, 2019, 8: 110.

[21] Jiang L, Wang A D, Li B, et al. Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication:modeling, method, measurement and application[J]. Light: Science & Applications, 2018, 7(2): 17134.

[22] Liu K C, Zhang Z Y, Shan C X, et al. A flexible and superhydrophobic upconversion-luminescence membrane as an ultrasensitive fluorescence sensor for single droplet detection[J]. Light: Science & Applications, 2016, 5(8): e16136.

[23] 李金健, 刘一, 曲士良. 飞秒激光微纳加工光纤功能器件研究进展[J]. 激光与光电子学进展, 2020, 57(11): 111402.

    Li J J, Liu Y, Qu S L. Research progress on optical fiber functional devices fabricated by femtosecond laser micro-nano processing[J]. Laser & Optoelectronics Progress, 2020, 57(11): 111402.

[24] Malinauskas M, Zukauskas A, Hasegawa S, et al. Ultrafast laser processing of materials: from science to industry[J]. Light: Science & Applications, 2016, 5(8): e16133.

[25] 陈招弟, 李纪超, 萧善霖, 等. 激光还原氧化石墨烯制备薄膜柔性电子器件[J]. 激光与光电子学进展, 2020, 57(11): 111428.

    Chen Z D, Li J C, Xiao S L, et al. Laser reduced graphene oxide for thin film flexible electronic devices[J]. Laser & Optoelectronics Progress, 2020, 57(11): 111428.

[26] Yuan Z Q, Chen H, Tang J X, et al. A novel preparation of polystyrene film with a superhydrophobic surface using a template method[J]. Journal of Physics D Applied Physics, 2007, 40(11): 3485.

[27] Oktay B, Toker R D, Kayaman-Apohan N. Superhydrophobic behavior of polyimide-siloxane mats produced by electrospinning[J]. Polymer Bulletin, 2015, 72(11): 2831-2842.

[28] Gong D W, Long J Y, Jiang D F, et al. Robust and stable transparent superhydrophobic polydimethylsiloxane films by duplicating via a femtosecond laser-ablated template[J]. ACS Applied Materials & Interfaces, 2016, 8(27): 17511-17518.

[29] Wang W, Liu Y Q, Liu Y, et al. Direct laser writing of superhydrophobic PDMS elastomers for controllable manipulation via Marangoni effect[J]. Advanced Functional Materials, 2017, 27(44): 1702946.

[30] Zhang Y L, Ma J N, Liu S, et al. A “Yin”-“Yang” complementarity strategy for design and fabrication of dual-responsive bimorph actuators[J]. Nano Energy, 2020, 68: 104302.

[31] Chen F Z, Lu Y, Liu X, et al. Table salt as a template to prepare reusable porous PVDF-MWCNT foam for separation of immiscible oils/organic solvents and corrosive aqueous solutions[J]. Advanced Functional Materials, 2017, 27(41): 1702926.

[32] Li D K, Gou X L, Wu D H, et al. A robust and stretchable superhydrophobic PDMS/PVDF@KNFs membrane for oil/water separation and flame retardancy[J]. Nanoscale, 2018, 10(14): 6695-6703.

[33] Liu T, Li X F, Wang D H, et al. Superhydrophobicity and regeneration of PVDF/SiO2 composite films[J]. Applied Surface Science, 2017, 396: 1443-1449.

[34] Wu J D, Ding Y J, Wang J Q, et al. Facile fabrication of nanofiber- and micro/nanosphere-coordinated PVDF membrane with ultrahigh permeability of viscous water-in-oil emulsions[J]. Journal of Materials Chemistry A, 2018, 6(16): 7014-7020.

[35] Han D D, Cai Q, Chen Z D, et al. Bioinspired surfaces with switchable wettability[J]. Frontiers in Chemistry, 2020, 8: 692.

[36] Zhang P C, Lin L, Zang D M, et al. Designing bioinspired anti-biofouling surfaces based on a superwettability strategy[J]. Small, 2017, 13(4): 1503334.

[37] Viswanath P, Yoshimura M. Light-induced reversible phase transition in polyvinylidene fluoride-based nanocomposites[J]. SN Applied Sciences, 2019, 1(11): 1-9.

[38] Bartnik A, Fiedorowicz H, Jarocki R, et al. Efficient micromachining of poly(vinylidene fluoride) using a laser-plasma EUV source[J]. Applied Physics A, 2012, 106(3): 551-555.

[39] Sultana T, Georgiev G L, Auner G, et al. XPS analysis of laser transmission micro-joint between poly (vinylidene fluoride) and titanium[J]. Applied Surface Science, 2008, 255(5): 2569-2573.

[40] Chakradhar R P S, Prasad G, Bera P, et al. Stable superhydrophobic coatings using PVDF-MWCNT nanocomposite[J]. Applied Surface Science, 2014, 301: 208-215.

李纪超, 陈招弟, 韩冬冬, 张永来, 孙洪波. 超疏水聚偏氟乙烯的激光加工[J]. 中国激光, 2021, 48(2): 0202002. Jichao Li, Zhaodi Chen, Dongdong Han, Yonglai Zhang, Hongbo Sun. Laser Processing of Polyvinylidene Fluoride with Superhydrophobicity[J]. Chinese Journal of Lasers, 2021, 48(2): 0202002.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!