中国激光, 2021, 48 (3): 0312002, 网络出版: 2021-02-02   

原子介质中的近共振增益光栅 下载: 772次封面文章

Nearly-Resonant Gain Grating in Atomic Media
作者单位
1 山西大学物理电子工程学院, 山西 太原 030006
2 山西大学极端光学协同创新中心, 山西 太原 030006
摘要
研究了一种N型四能级原子结构中的近共振增益光栅(NRGG)效应。结果表明,当耦合场的失谐值为0,探测场和调制场的失谐值接近于0时,利用调制场和耦合场可以调控探测场的增益和相位,使得探测场的能量和高阶衍射效率都得到显著提高。在这个过程中,调制场强度存在阈值。获得了具有增益高、衍射能力强和阈值可控的光栅,该光栅在全光开关、全光逻辑门和全光调制等应用中将会发挥较大的作用。
Abstract

Objective With the increasing demand for high capacity and high speed information transmission, the transmission, storage, retrieval, transformation, and processing of optical information have become a very important research area in the field of information science. A grating is a type of optical device with a spatially-periodic structure. It has four main properties: dispersion, beam splitting, polarization, and phase matching. It is widely used in information processing, optical communication, optical storage, and other fields. However, when a grating is used in communications, it not only has a conversion efficiency and a conversion rate between optical and electrical signals, but also has the response rate of a mechanical structure, which has large effects on the signal transmission efficiency, bandwidth, and stability. Therefore, all-optical networks based on the all-optical switching technology have become a new focus of research. In all-optical networks, information transmission, transformation, and amplification do not need light-electricity conversion, and the optical structures are simple, reconfigurable with anti-interference capability, thus the utilization rate of network resources is improved. The core device of an all-optical network based on an all-optical switch has the advantages of stability, high capacity, and ultra-high speed, and thus, it has attracted more and more attention from researchers. Therefore, the purpose of this study is to realize all-optical control based on grating characteristics. We achieve a nearly-resonant gain grating effect that can be used to control light in real-time and thus all-optical control is realized.

Methods In an N-type four-level atomic system, the analytical expression of the polarization rate of the probe field was first calculated by the density matrix method under the steady-state condition based on the perturbation theory. Then, the propagation equation of the probe field was obtained using Maxwell's equations. From the analytical solution, the related factors affecting the diffraction efficiency of the probe field were analyzed, mainly including the Rabi frequencies and detunings of the modulation and coupling fields. In addition, it was seen that the transfer function of the interaction length between light and atoms also influenced the diffraction efficiency. We focused on the amplification and diffraction capacity of the probe field and generated the transmission functional curve of the probe field. The changes in diffraction intensity with Rabi frequencies, detunings of the modulation and coupling fields, and interaction length between light and atoms were also considered. A nearly-resonant gain grating with high gain and a strong diffraction ability was realized by identifying and adjusting the relevant parameters appropriately.

Results and Discussions A nearly-resonant gain grating effect is studied in an N-type four-level coherent atomic structure. The grating can not only amplify the light information, but can also actively control the light field in real-time and realize the modulation of the amplitude and phase at the same time to achieve all-optical control. When the coupling field is resonant and the probe and modulation fields are near resonance, they can regulate the gain and phase of the probe field so that the energy of the probe field is amplified and the high-order diffraction efficiency of the probe field can be significantly improved [Fig. 2(b)]. It is seen that the diffraction efficiency of the nearly-resonant gain grating goes beyond the theoretical limit of an ideal sinusoidal phase grating, and its diffraction efficiency is nearly three times that of a sinusoidal phase grating. In addition, during the change in the Rabi frequency of the modulation field, the atomic medium can continuously transform between the absorption and gain media [Fig. 3(a)]. Moreover, the modulation field has a threshold for the diffracted light during this process. When the intensity of the modulation field is less than the threshold, there is almost no diffracted light. When the intensity of the modulation field is greater than the threshold, the intensity of the each order diffracted light increases sharply (Fig. 6).

Conclusions We theoretically study a nearly-resonant gain grating in an N-type four-level atomic system. The results show that the energy of the probe field is amplified by four times under the combined action of the modulation and coupling fields when there is only amplitude modulation, and this is mainly concentrated in the zeroth-order diffraction direction. With the introduction of phase modulation, the coupling field plays an important role in the distribution of diffracted light, and more energy is distributed along the higher-order diffraction direction. In this process, for the first-order, second-order, and third-order diffracted light, there are thresholds for the modulation field, which are 0.28γ, 0.26γ, and 0.32γ, respectively. When the intensity of the modulation field is less than the threshold, there is almost no diffracted light, and when the intensity of the modulation field is above the threshold, the intensity of each order diffracted light increases dramatically. In addition, other factors affecting the high-order diffraction efficiency of the probe field are also studied. By adjusting the relevant parameters, a grating with high gain, strong diffraction capacity, and controllable threshold is obtained, which has broad applications in new photonic devices such as all-optical switches, all-optical routes, and all-optical logic gates.

1 引言

原子中的量子相干效应产生了许多有趣的现象,其中电磁感应透明[1](EIT)为深入研究光与原子的相互作用开辟了新的途径。基于EIT的原子相干效应如无粒子数反转激光[2-4]、非线性量子光学[5-7]和简并能级的EIT现象[8-9]等引起了学者们的广泛关注。此外,EIT还被应用于光存储[10-11]和单光子开关[12-13]等各种量子器件中。在Λ型三能级原子EIT系统中,用驻波代替耦合场的行波以形成电磁感应光栅[14](EIG)。EIG得到了广泛关注和研究[15-18],学者们分别在冷原子[19]和热原子[20]的实验中证明了EIG现象。另外,学者们还提出了许多基于EIG的应用,如全光开关[21-23]、相干诱导光子带隙[24]和静止光脉冲[25-26]等。

与传统光栅相比,EIG可以主动实时调控光场,能够同时实现振幅和相位的调制。然而,EIG获得的衍射效率相对较小。为了提高衍射效率,de Araujo[27]提出了一种电磁感应相位光栅(EIPG),其一阶衍射效率接近理想正弦相位光栅。之后,许多研究者对EIPG进行了深入的研究 [28-29]。尽管如此,EIPG的高阶衍射效率还是相对较小,探测场的能量并没有得到很好的放大。本文从理论上研究了一种N型四能级原子介质中的近共振增益光栅(NRGG)效应。在调制场和耦合场的共同作用下,得到了具有增益高、衍射能力强和阈值可控的光栅。此外,还具体研究了影响衍射效率的相关因素。

2 模型与方程

图1(a)是N型四能级原子系统的能级结构示意图,与原子系统作用的三束光分别为探测场、耦合场和调制场,其中,ΩpΩcΩm分别为探测场、耦合场和调制场的半拉比频率。探测场和驻波耦合场分别驱动跃迁|1>↔|3>和|2>↔|3>。调制场作用于基态能级|1>和激发态能级|4>。能级跃迁|4>↔|3>和|2>↔|1>为偶极禁戒。如图1(b)所示,探测场的传播方向沿着z轴方向,耦合场在原子区域叠加并在x方向形成驻波场,可以表示为Ωc=Ωsin πx/Λ,其中,Ω为耦合场的半拉比频率的最大值,Λ为驻波空间周期,x为驻波在x方向上的坐标。

图 1. 原子系统的能级结构及场与原子系统间的位置关系。(a) N型四能级原子系统的能级结构;(b)探测场、耦合场和调制场与原子系统的位置关系,零阶、一阶和二阶衍射方向标于图中

Fig. 1. Energy level structure of atomic system and position relation between fields and atomic system. (a) Four-level N-type atomic system; (b) spatial configuration of probe, modulation, and coupling fields with respect to atomic sample in which zeroth-order, first-order and second-order diffraction directions are indicated

下载图片 查看所有图片

在旋波近似下,给出了四能级原子系统的密度矩阵演化方程

ρ11t=Γ41ρ44+Γ31ρ33+Γ21ρ22+iρ31Ωp*-ρ13Ωp+iρ41Ωm*-ρ14Ωm,(1)ρ22t=Γ42ρ44+Γ32ρ33-Γ21ρ22+iρ32Ωc*-ρ23Ωc,(2)ρ33t=Γ43ρ44-Γ32ρ33-Γ31ρ33+iρ23Ωc-ρ32Ωc*+iρ13Ωp-ρ31Ωp*,(3)ρ44t=-Γ43+Γ42+Γ41ρ44+iρ14Ωm-ρ41Ωm*,(4)ρ21t=-γ'21ρ21+iρ31Ωc*-iρ24Ωm-iρ23Ωp,(5)ρ31t=-γ'31ρ31+iρ21Ωc-iρ34Ωm+iρ11-ρ33Ωp,(6)ρ41t=-γ'41ρ41-iρ43Ωp+iρ11-ρ44Ωm,(7)ρ23t=-γ'23ρ23-iρ22-ρ33Ωc*-iρ21Ωp*,(8)ρ42t=-γ'42ρ42-iρ43Ωc+iρ12Ωm,(9)ρ43t=-γ'43ρ43+iρ13Ωm-iρ42Ωc*-iρ41Ωp*,(10)

式中:γ'21=γ21-i Δp-Δc,γ'31=γ31-iΔp,γ'41=γ41-iΔm,γ'23=γ23+iΔc,γ'42=γ42-i Δc+Δm-Δp,γ'43=γ43-i Δm-Δp;γij为能级ij的相位衰减,γij= Γi+Γj/2,其中Γii能级的衰减项,Γjj能级的衰减项;Γij为对应能级间的粒子数衰减率;Δm,Δc,Δp分别为调制场、耦合场和探测场的频率失谐量,Δm=ωm-ω41,Δc=ωc-ω32,Δp=ωp-ω31,其中ωm,ωcωp为圆频率,ω41ω32ω31为相应的原子跃迁频率;Ωm=μ41Em/(2ћ),Ωc=Ωsin πx/Λ,Ωp=μ31Ep/2ћ,其中Ω=μ32Ec÷(2ћ),μ41,μ32,μ31分别为对应的偶极矩,Em,Ec,Ep分别为调制场、耦合场和探测场的电场强度,ћ为约化普朗克常量;*表示复共轭;t为时间;ρij为密度矩阵元且ρij= ρji*。闭合原子系统需要满足且ρ11+ρ22+ρ33+ρ44=1。

稳态下,通过计算得到

ρ31Ωp=Ωm2-Ωc2+γ'21γ'24Ωmρ14(0)+Ωc2-Ωm2+γ'34γ'24Ωcρ23(0)+iγ'34Ωm2+γ'21Ωc2+γ'21γ'24γ'34ρ11(0)-ρ33(0)÷Ωm2-Ωc2-γ'31γ'21Ωm2-Ωc2-γ'34γ'24+Ωm2γ'31+γ'24γ'21+γ'34,(11)

式中:

ρ11(0)=Ωc2γ'23+γ'32Γ31Γ41+Γ42γ'14γ'41+Ωm2γ'14+γ'41÷Ωm2γ'14+γ'41γ'23Γ313Ωc2+Γ42γ'32+4Ωc2γ'32Γ31+Γ42γ'23Ωc2+Γ32γ'32+Γ41+Γ42γ'23+γ'32γ'14γ'41Ωc2Γ31,(12)ρ14(0)=-iΩc2Ωmγ'23+γ'32Γ31Γ41+Γ42γ'41÷Ωm2γ'14+γ'41γ'23Γ313Ωc2+Γ42γ'32+4Ωc2γ'32Γ31+Γ42γ'23Ωc2+Γ32γ'32+Γ41+Γ42γ'23+γ'32γ'14γ'41Ωc2Γ31,(13)ρ23(0)=-iΩc*Ωm2γ'14+γ'41Ωc2Γ31-Γ42+Γ31+Γ32Γ42γ'32÷Ωm2γ'14+γ'41γ'32Γ313Ωc2+Γ42γ'23+4Ωc2γ'23Γ31+Γ42γ'32Ωc2+Γ32γ'23+Γ41+Γ42γ'23+γ'32γ'14γ'41Ωc2Γ31,(14)ρ33(0)=Ωc2Ωm2γ'23+γ'32γ'14+γ'41Γ42÷Ωm2γ'14+γ'41γ'23Γ313Ωc2+Γ42γ'32+4Ωc2γ'32Γ31+Γ42γ'23Ωc2+Γ32γ'32+Γ41+Γ42γ'23+γ'32γ'14γ'41Ωc2Γ31(15)

由探测场引起的介质的慢变极化强度为

Pp=ε0χpEp=N0μ31ρ31,(16)

式中:N0为原子密度;ε0为介质的介电常数;χp为由探测场引起的介质极化率,即

χp=N0μ31ε0Epρ31=N0μ3122ћε0γ31χ,(17)

式中:χ的计算公式为

χ=ρ31Ωpγ31(18)

在慢变包络近似和稳态体制下,探测场的传播方程[14]可以写为

Epz=iπε0λpPp,(19)

式中:λp为探测场波长。

利用(19)式,得到原子介质在z=L处的传输函数为

T(x)=exp-Ιm(χ)LexpiRe(χ)L,(20)

式中:Ιm(·)为虚部;Re(·)为实部。

这里,L以共振吸收长度z0=2ћε0λγ31÷ πN0μ312为单位。夫琅禾费衍射方程为

Ιp(θ)=Ep1(θ)2sin2MπΛsinθ/λpM2sin2πΛsinθ/λp,(21)

式中: Ep1(θ)为单个空间周期的夫琅禾费衍射, Ep1(θ)= 01T(x)exp -2πiΛxsinθ/λpdx,其中M为被探测场照射到的衍射单元数;θ为探测场相对于z方向的衍射角。

3 结果与讨论

本文假设γ31=γ32=γ41=γ42=γ,γ43=2γ,Γ31=Γ32=Γ41=Γ42=γ,Γ21=Γ43=0。图2(a)所示为探测场的传输函数T(x)随x的变化,传输函数的相位φ=Re(χ)L。可以看到,传输函数的振幅调制和相位调制在x方向上周期性地变化。调制场驱动跃迁|1>↔|4>,振幅的调制幅度增大,调制幅度在1.0~2.6之间振荡,探测场强度增加。加入的相位调制对传输函数有很大的调制作用,传输函数的最大相位可以到达0.93π,这使得探测场的一阶衍射效率有了很大提高。图2(b)所示为探测场衍射强度随sin θ的变化。当没有相位调制、只有振幅调制时,NRGG的零阶衍射光强度被放大为探测场强度的4倍,如图2(c)所示,此时一阶衍射光强度约为探测场强度的20%,这表明振幅调制将光主要衍射到零阶方向。当同时考虑相位和振幅调制时,更多的能量转移到一阶和二阶衍射方向,如图2(b)所示。这说明相位调制的存在使得探测场能量由零阶向高阶方向分散。当选取合适的参数时,NRGG的零阶衍射光强度被放大为探测场强度的2倍,如图2(c)所示,此时一阶衍射光强度约为探测场强度的95%。当振幅调制和相位调制同时存在时,EIPG的零阶和一阶衍射效率分别只有21%和30%。可以看到,NRGG的衍射效率远高于EIPG和理想的正弦相位光栅的衍射效率[30]。因此,NRGG能更好地放大探测场的能量并且显著提高高阶衍射效率。

图 2. Δc=0,Δm=0.68γ,Δp=-0.05γ,Ωc=0.27γ,Ωm=0.35γ,L=140z0时探测场的传输函数及相应的衍射强度。(a)探测场传输函数的振幅和相位随x的变化;(b)不同相位调制条件下衍射强度随sin θ的变化;(c) 图2(b)中零阶衍射强度大于1.0的部分

Fig. 2. Transmission function and corresponding diffraction intensity of probe field when Δc=0, Δm=0.68γ, Δp=-0.05γ, Ωc=0.27γ, Ωm=0.35γ, and L=140z0 . (a) Amplitude and phase of transmission function of probe field versus x; (b) diffraction intensity versus sin θ under different phase modulation conditions; (c) part with zeroth-order diffraction int

下载图片 查看所有图片

首先讨论探测场增益的来源。图3(a)所示为由探测场引起的介质极化率的虚部随调制场拉比频率的变化。当调制场强度较低时,极化率的虚部为正,这意味着原子介质表现为对探测场能量的吸收,而且吸收系数随调制场强度的增大而减小。当调制场的拉比频率为0.28γ时,原子介质对探测场的吸收为0。当Ωm为0.28γ~0.41γ时,极化率的虚部小于0,此时原子介质由吸收介质转变为增益介质。当调制场的拉比频率为0.34γ时,极化率的虚部达到最小,即探测场增益最大。随着调制场强度的继续增大,极化率的虚部也增大,此时增益减小。当调制场为0.41γ时,原子介质对探测场的吸收再次为0。当Ωm大于0.41γ时,曲线始终在0以上,表明探测场不再产生增益,原子介质再次转变为吸收介质。图3(b)所示为介质极化率的虚部随耦合场拉比频率的改变。曲线总是在0以下,这表明随着Ωc的增加,探测场始终会产生增益,且曲线的最低点代表介质的最大增益。探测场之所以始终产生增益,是因为此时Ωm的取值为0.28γ~0.37γ。如果Ωm小于0.28γ,无论耦合场取值有多大,探测场都不会有增益产生;如果Ωm大于0.37γ,只有当耦合场取一些合适的值时,探测场才有增益产生。也就是说,调制场的取值在一定范围内时探测场才会存在增益。图3表明调制场和耦合场的拉比频率都与探测场的增益有关,而调制场对探测场能量的放大作用更加显著。通过合理调节调制场和耦合场的强度,可以更好地放大探测场的能量。

图 3. Δc=0,Δm=0.68γ,Δp=-0.05γ,L=140z0时Im(χ)随调制场拉比频率和耦合场拉比频率的变化。(a) Im(χ)随调制场拉比频率的变化;(b) Im(χ)随耦合场拉比频率的变化

Fig. 3. Im (χ) versus Rabi frequencies of modulation field and coupling field when Δc=0, Δm=0.68γ, Δp=-0.05γ, and L=140z0. (a) Im (χ) versus Rabi frequency of modulation field; (b) Im (χ) versus Rabi frequency of coupling field

下载图片 查看所有图片

图4(a)、(b)、(c)分别为探测场的一阶、二阶和三阶衍射强度与ΩcΩm的关系。可以看出,当调制场和耦合场的拉比频率分别为0.35γ和0.27γ时,一阶衍射效率可达95%左右;当调制场和耦合场的拉比频率分别为0.36γ和0.55γ时,二阶衍射效率可达45%左右;当ΩmΩc的值分别为0.36γ和0.76γ时,三阶衍射效率可达25%左右。此外,一阶、二阶和三阶最大衍射效率对应的Ωc值分别为0.27γ、0.55γ和0.76γ,说明衍射阶数越高,Ωc的值越大,而Ωm的值基本保持不变。因此,衍射阶数主要由Ωc决定,而Ωm则能提高衍射的最大值。相位调制可以使探测场的能量由零阶向高阶方向转移,因此认为Ωc对相位调制起着重要作用,而Ωm的作用相对较小。

图 4. Δc=0,Δm=0.68γ,Δp=-0.05γ,L=140z0 时高阶衍射强度随ΩcΩm的变化。(a)一阶衍射强度;(b)二阶衍射强度;(c)三阶衍射强度

Fig. 4. High-order diffraction intensity versus Ωc and Ωm when Δc=0, Δm=0.68γ, Δp=-0.05γ, and L=140z0.(a) First-order diffraction intensity; (b) second-order diffraction intensity; (c) third-order diffraction intensity

下载图片 查看所有图片

图5(a)、(b)、(c)分别为探测场的一阶、二阶和三阶衍射强度随ΔpΔm的变化。可以看出,当探测场和调制场的失谐值分别约为-0.058γ和0.78γ(或0.058γ和-0.78γ)时,一阶衍射效率可达95%左右,远远高于理想的正弦光栅的一阶衍射极限(34%);当探测场和调制场的失谐值分别约为-0.05γ和0.98γ(或0.05γ和-0.98γ)时,二阶衍射效率可达24%左右;当探测场和调制场的失谐值分别为-0.06γ和0.83γ(或0.06γ和-0.83γ)时,三阶衍射效率可达16%左右。因此,在探测场和调制场的失谐值很小的情况下,可获得很高的高阶衍射效率。

图 5. Δc=0,Ωc=0.27γ,Ωm=0.33γ,L=140z0时高阶衍射强度随ΔpΔm的变化。(a)一阶衍射强度;(b)二阶衍射强度;(c)三阶衍射强度

Fig. 5. High-order diffraction intensity versus Δp and Δm when Δc=0, Ωc=0.27γ, Ωm=0.33γ, and L=140z0. (a) First-order diffraction intensity; (b) second-order diffraction intensity; (c) third-order diffraction intensity

下载图片 查看所有图片

探测场的衍射强度随光与原子相互作用长度的变化如图6所示。随着相互作用长度的增加,探测场的增益提高,交叉相位调制幅度增大,因此NRGG衍射效率增大,且衍射效率的峰值逐渐向右偏移。最初调制场的拉比频率较小时,衍射效率几乎为0。但当调制场的拉比频率超过一定值时,衍射效率急剧增加,而且四条曲线的变化趋势基本相同。这说明在NRGG中,对于探测场的一阶衍射光,调制场强度存在阈值。例如,当Ωm小于0.26γ时,衍射效率几乎为0,超过0.26γ时,衍射效率急剧增加;当Ωm的值为0.35γ时,一阶衍射效率达到最大,之后随着Ωm的增大而逐渐减小。通过研究还发现,该阈值现象不仅在一阶衍射光中存在,在高阶光中也同样存在。例如,在相同条件下,二阶和三阶衍射光的阈值分别是0.28γ和0.32γ。此结论可以被应用于全光开关和全光调制[31]中。调整的最佳结果表明,合适的调制场和耦合场的拉比频率、失谐值及光与原子相互作用的长度是得到高阶衍射效率的必要条件。

图 6. 当sin θ1=0.25,Δc=0,Δm=0.68γ,Δp=-0.05γ,Ωc=0.27γ,L=140z0时不同的L下探测场的一阶衍射强度随Ωm的变化

Fig. 6. First-order diffraction intensity versus Ωm for different L when sin θ1=0.25, Δc=0, Δm=0.68γ, Δp=-0.05γ, Ωc=0.27γ, and L=140z0

下载图片 查看所有图片

4 结论

在N型四能级原子系统中对NRGG进行了理论研究。结果表明,当只有振幅调制时,在调制场和耦合场的共同作用下,探测场的能量被放大4倍,并且主要集中在零阶衍射方向。在加入相位调制后,耦合场对衍射光的分布起着重要作用,更多的能量转移到了高阶衍射方向。在此过程中,对于一阶、二阶和三阶衍射光来说,调制场强度存在阈值,分别为0.26γ、0.28γ和0.32γ。当调制场的强度小于阈值时,几乎没有衍射光,当调制场的强度大于阈值时,各阶衍射光的强度都会急剧增加。此外,还研究了影响探测场高阶衍射效率的其他因素。通过调整相关参数,得到了增益高、衍射能力强和阈值可控的光栅,该光栅在全光开关、全光路由和全光逻辑门等新型光子器件中有广阔的应用前景。

参考文献

[1] Boller K J. Imamo ɡ̬lu A, Harris S E. Observation of electromagnetically induced transparency[J]. Physical Review Letters, 1991, 66(20): 2593-2596.

[2] Harris S E. Lasers without inversion: interference of lifetime-broadened resonances[J]. Physical Review Letters, 1989, 62(9): 1033-1036.

[3] 樊锡君, 张郡亮, 李萍, 等. 开放的ladder型三能级无粒子数反转激光系统[J]. 中国激光, 2002, 29(4): 327-331.

    Fan X J, Zhang J L, Li P, et al. Open ladder-type three level noninversion lasing system[J]. Chinese Journal of Lasers, 2002, 29(4): 327-331.

[4] Ling H Y. Theoretical investigation of phenomena in the closed Raman-driven four-level symmetrical model[J]. Physical Review A, 1994, 49(4): 2827-2838.

[5] Kang H, Zhu Y F. Observation of large Kerr nonlinearity at low light intensities[J]. Physical Review Letters, 2003, 91(9): 093601.

[6] Li J H, Yang W X, Peng J C. Continuous-wave four-wave mixing with linear growth based on electromagnetically dual induced transparency[J]. Chinese Optics Letters, 2004, 2(7): 418-420.

[7] Firstenberg O, Adams C S, Hofferberth S. Nonlinear quantum optics mediated by Rydberg interactions[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2016, 49(15): 152003.

[8] Dong Y B, Wang H H, Gao J R, et al. Quantum coherence effects in quasi-degenerate two-level atomic systems[J]. Physical Review A, 2006, 74(6): 063810.

[9] Dong Y B, Zhang J X, Wang H H, et al. Observation of the widening and shifting of EIT windows in a quasi-degenerate two-level atomic system[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2006, 39(17): 3447-3455.

[10] Bajcsy M, Zibrov A S, Lukin M D. Stationary pulses of light in an atomic medium[J]. Nature, 2003, 426(6967): 638-641.

[11] Heinze G, Hubrich C, Halfmann T. Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute[J]. Physical Review Letters, 2013, 111(3): 033601.

[12] Baur S, Tiarks D, Rempe G, et al. Single-photon switch based on rydberg blockade[J]. Physical Review Letters, 2014, 112(7): 073901.

[13] Murray C R, Gorshkov A V, Pohl T. Many-body decoherence dynamics and optimized operation of a single-photon switch[J]. New Journal of Physics, 2016, 18(9): 092001.

[14] Ling H Y, Li Y Q, Xiao M. Electromagnetically induced grating: homogeneously broadened medium[J]. Physical Review A, 1998, 57(2): 1338-1344.

[15] Xiao Z H, Shin S G, Kim K. An electromagnetically induced grating by microwave modulation[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2010, 43(16): 161004.

[16] Bozorgzadeh F, Sahrai M, Khoshsima H. Controlling the electromagnetically induced grating via spontaneously generated coherence[J]. The European Physical Journal D, 2016, 70(9): 191.

[17] 董雅宾, 周志英, 李俊燕, 等. 室温原子系统中的电磁感应光栅效应[J]. 中国激光, 2017, 44(9): 0912002.

    Dong Y B, Zhou Z Y, Li J Y, et al. Electromagnetically induced grating effect in room-temperature atomic system[J]. Chinese Journal of Lasers, 2017, 44(9): 0912002.

[18] Dong Y B, Li J Y, Zhou Z Y. Electromagnetically induced grating in a thermal N-type four-level atomic system[J]. Chinese Physics B, 2017, 26(1): 014202.

[19] Tabosa J W R, Lezama A, Cardoso G C. Transient Bragg diffraction by a transferred population grating: application for cold atoms velocimetry[J]. Optics Communications, 1999, 165(1/2/3): 59-64.

[20] Brown A W, Xiao M. Frequency detuning and power dependence of reflection from an electromagnetically induced absorption grating[J]. Journal of Modern Optics, 2005, 52(16): 2365-2371.

[21] Brown A W, Xiao M. All-optical switching and routing based on an electromagnetically induced absorption grating[J]. Optics Letters, 2005, 30(7): 699-701.

[22] Sheng J T, Yang X H, Khadka U, et al. All-optical switching in an N-type four-level atom-cavity system[J]. Optics Express, 2011, 19(18): 17059.

[23] Dawes A M C. All-optical switching in rubidium vapor[J]. Science, 2005, 308(5722): 672-674.

[24] Artoni M. La Rocca G C. Optically tunable photonic stop bands in homogeneous absorbing media[J]. Physical Review Letters, 2006, 96(7): 073905.

[25] Hansen K R, Mølmer K. Trapping of light pulses in ensembles of stationary Λ atoms[J]. Physical Review A, 2007, 75(5): 053802.

[26] de Guise H, Tan S H, Poulin I P, et al. Coincidence landscapes for three-channel linear optical networks[J]. Physical Review A, 2014, 89(6): 063819.

[27] . Electromagnetically induced phase grating[J]. Optics Letters, 2010, 35(7): 977-979.

[28] Sahrai M, Bozorgzadeh F, Khoshsima H. Phase control of electromagnetically induced grating in a four-level atomic system[J]. Optical and Quantum Electronics, 2016, 48(9): 438.

[29] Sadighi-Bonabi R, Naseri T. Theoretical investigation of electromagnetically induced phase grating in RF-driven cascade-type atomic systems[J]. Applied Optics, 2015, 54(11): 3484-3490.

[30] Goodman JW. Introduction to Fourier optics[M]. New York: McGraw-Hill, 1968.

[31] 李淳飞, 臧志刚. 用非线性光纤连接的长周期光栅对的光开关特性[J]. 中国激光, 2008, 35(12): 1919-1923.

    Li C F, Zang Z G. Optical switching in a nonlinear-fiber connected long-period fiber grating pair[J]. Chinese Journal of Lasers, 2008, 35(12): 1919-1923.

董雅宾, 庞嘉璐, 杨丽, 刘瑶瑶. 原子介质中的近共振增益光栅[J]. 中国激光, 2021, 48(3): 0312002. Yabin Dong, Jialu Pang, Li Yang, Yaoyao Liu. Nearly-Resonant Gain Grating in Atomic Media[J]. Chinese Journal of Lasers, 2021, 48(3): 0312002.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!