中国激光, 2021, 48 (7): 0701004, 网络出版: 2021-04-02   

单频可调谐连续1342 nm注入锁频环形激光器 下载: 1323次

A Tunable CW Single-Frequency 1342-nm Injection-Locked Ring Laser
作者单位
1 核工业理化工程研究院, 天津 300180
2 粒子输运与富集技术国防科技重点实验室, 天津 300180
摘要
为了获得高功率的单频可调谐1342 nm激光,研究了一种注入锁频Nd∶YVO4环形激光器。以1.0 W可调谐单频连续1342 nm激光为种子光,“8”字环形谐振腔为从激光器功率腔,基于PDH(Pound-Drever-Hall)锁频技术实现了环形功率腔的锁定,获得了8.3 W的单频连续可调谐1342 nm的激光输出。
Abstract

Objective At present,distributed Bragg reflector (DBR), distributed feedback (DFB) laser, or external cavity diode laser (ECDL) is usually used to realize a tunable single-frequency laser output in 1.3 μm. However, the output power of these diode lasers is as low as several mW. Some studies used a 1.3-μm laser for an effective selective atom stimulation; hence, a higher output power of the lasers was needed. This work presents an injection-locked Nd∶YVO4 ring laser that can effectively improve the power of a CW single-frequency 1342-nm laser with wavelength tuning. The amplified 1342-nm laser retains most of the spectral characteristics of the seed laser. This injection-locked Nd∶YVO4 ring laser has the advantages of high gain and high beam quality and is very easy to realize. As a consequence of the high power, the doubling frequency of 1342 nm (671-nm red light) and the quadruple frequency (336-nm UV light) can be obtained more easily for some other works.

Methods An injection-locked Nd∶YVO4 ring laser was studied herein. Three modules were considered, namely the seed laser, the laser amplifier, and the Pound-Drever-Hall (PDH) frequency locking system. The seed laser provides the injection source. While the PDH system is being unlocked, the seed laser is reflected away from the cavity because it does not match the resonant conditions of the power cavity. Conversely, while the PDH system is locked, the seed light can be injected into the amplifier cavity and effectively amplified. In this work, a seed laser with output power of the order of mW, good beam quality, and good stability was used. After the injection-locked amplification, the laser retained the spectral characteristics of the seed light, including the single longitudinal mode and the adjustable wavelength. Meanwhile, the laser energy and the beam quality were improved. In this study, a tunable 1.0 W CW single-frequency 1342-mm laser was used as the seed light, and an 8-type ring resonator was used as the amplifier cavity. The injection-locked Nd∶YVO4 ring laser was realized, based on the frequency locking technology of the PDH. The seed laser was amplified by the amplifier cavity, and the output power was significantly increased.

Results and Discussions A 1.3-μm seed laser is successfully injected into the amplifier cavity, and an effective laser amplification with the PDH frequency locked is realized (Fig. 2). At the same time, the frequency characteristics of the 1342-nm output laser are measured by an F-P scanning interferometer. The 1342-nm laser is operated at a single frequency. The spectral line-width is approximately 240 MHz (Fig. 3). We inject 1.0 W of seed light into the amplifier cavity and perform experiments on the input coupling mirror with different transmittances. We achieve a good experimental result with 7% transmittance of the coupling mirror (Table 1). We also perform an optimization experiment of the laser output power with different seed light powers using 7% transmittance of the input mirror. With the increase of the seed light power, the amplified laser power gradually increases, and the frequency locking becomes more stable. The total amplified output power of the 1342-nm laser reaches 8.3 W, when the power of the seed laser is 1 W. Therefore, increasing the seed light power seems to be an effective method of increasing the amplification efficiency and stability (Fig. 4). The maximum output power is 8.3 W with the 35-W pump laser (Fig. 5). Following the increase of the pump power (>35 W), the amplified laser output power decreases with the pump power because of the noise in the laser system. We also investigate the laser tunability. The tuning range is 1342.05--1342.25 nm when the power of the seed laser is 1 W, with 4.8 W as the highest output power. The tuning range of the output laser is 1342.09--1342.21 nm, which is smaller than 4.8 W (Fig. 6), when the power of the seed laser is 1.0 W, with 7.8 W as the highest output power. The experiment result demonstrates that the tuning range of the amplified laser decreases with the increase of the output laser. Increasing the energy of the injected seed laser is likely to be an effective method of increasing the tuning range. The innovative result obtained in this work is the demonstration of an easy and effective method of constructing a tunable CW single-frequency 1342-nm injection-locked Nd∶YVO4 ring laser with the maximum power output of 8.3 W. Some experiment results are also presented in this paper.

Conclusions An injection-locked Nd∶YVO4ring laser is studied herein. The influence of the amplification parameters, including the different transmittances of the input mirrors and the different powers of the injected seed light of the injection-locked ring laser, is analyzed. The maximum output power of the CW single-frequency 1342-nm laser is 8.3 W, which is obtained with the 8-type ring cavity at the power of the seed laser of 1.0 W. Characteristics such as high power, high beam quality, and continuous wavelength tunability are observed. The structure of the amplifier cavity will be optimized in subsequent experiments. We expect to acquire a wider tuning range with higher power and more stability of the CW single-frequency 1342-nm laser by increasing the frequency locking accuracy, reducing the system noise, and improving the seed light power.

1 引言

1.3μm波段激光器可以广泛应用于激光医学、光传感定位、光纤通信以及中红外参量振荡的泵浦源等领域[1-3]。其中1342 nm激光器倍频可得到671 nm红光[4-5],它的四倍频336 nm光可广泛用于光成像、光医学和光生物学等[6]

目前,对于单频可调谐的连续1342 nm激光器报道较少,实现1342 nm波段可调谐的激光器主要有分布反馈式(DBR)或外腔式半导体激光器,他们可实现稳定的频率调谐,但出射功率较低,大都在毫瓦级,因此想要获得高功率可调谐的1342 nm激光输出,需要采用放大技术对种子光进行放大。现有的放大手段有锥形放大、拉曼光纤放大[7]、注入锁定放大和多级行波放大等,但这些技术大都针对其他波段[4,8],在1342 nm波段的研究非常少。半导体锥形放大器输出能量低,只有1 W左右,且光斑较差。多级行波放大需在种子光注入功率较高的时候才会有高的放大效率,且系统较为复杂。注入锁定放大为固体放大,较其他几种放大有其自身特有的优点,如高增益、高光束质量、低成本等。

本文采用一种注入锁频的方式对可调谐、单频、低功率的1342 nm种子激光进行放大。将1.0 W的可调谐单频种子光注入四镜环形腔内,得到8.3 W的1342 nm激光输出。放大后的1342 nm激光在能量得到提高的同时,保留了种子激光的光谱特性。

2 实验装置

种子注入锁频激光器是借助具有较好光束质量的主激光器来控制一台具有较高能量的从激光器,由此保证从激光器的输出激光具有主激光器的特性,如单纵模、频率可调谐、高能量和高光束质量等[3],但其能量要远高于主激光器。它在结构上可分为三个模块:主激光器、从激光器和注入锁频系统,其中主激光器主要输出种子激光,从激光器又叫功率腔,主要对能量较低的种子光激光进行放大,以提高激光能量。

图1为整个种子光注入放大激光器的结构示意图,其工作过程为: 种子光经隔离器和整形器整形后,经由输入镜M2注入四镜环形功率腔内,当功率谐振腔被激光锁频系统锁频时,即环形腔的光学长度稳定在基频光波长的整数倍时,种子光被成功锁定在从激光器谐振腔内,其功率因干涉增强效应而大幅提高,形成谐振振荡,此时功率腔由双向运转变为沿种子光方向单向运转,并在腔内放大后输出[9]

图 1. 注入锁频环形激光器实验结构图

Fig. 1. Experimental setup for injection-locked ring laser

下载图片 查看所有图片

种子光是由德国TOPTICA公司生产的可调谐倍频半导体激光器(型号为DLC-TA PRO)所提供。主振荡光为外腔式半导体激光器出射的1342 nm红外光,经锥形放大器放大。其最大功率为1.2 W,波长连续可调,波长可调谐范围为1320~1500 nm,不跳模可调谐范围为30~50 GHz。

功率腔的泵浦源采用光纤耦合的激光二极管(LD),它的中心波长为880 nm,相比于传统的808 nm泵浦源,它可有效地减少晶体的热效应[5]。光纤输出的抽运光经耦合系统后纵向注入YVO4-Nd∶YVO4键合晶体工作物质中,聚焦光斑大小为600 μm。

从激光器采用四镜环形谐振腔结构,平面镜M1镀880 nm增透膜和1342 nm高反膜。腔镜M2为输入耦合镜,镀1342 nm透反膜,该膜的透过率决定种子光耦合入腔内的光强。M3和M4为平凹面镜,曲率半径为100 mm,镀1342 nm高反膜。四个腔镜均镀有1064 nm高透膜,主要为了抑制该波长激光在腔内起振。实验采用的YVO4-Nd∶YVO4键合晶体为增益介质,降低了晶体的热效应,晶体的两端面镀有880 nm、1342 nm和1064 nm增透膜。M5为45°反射镜,对1342 nm激光的透过率为99%,可监测种子光的波长和环形激光腔内逆向出射的激光。

锁频系统主要利用PDH(Pound-Drever-Hall)锁频技术[10-13]对功率腔进行精确锁定,电光调制器(EOM)由美国New Focus生产,其调制频率为25 MHz。控制系统为德国Toptica公司生产的Digilock110。M3腔镜上配有压电陶瓷(PZT),由德国PI公司生产。

3 实验结果与分析

将种子光经模式耦合后注入从激光谐振腔内,在M2腔镜后用光谱仪(日本YOKOGAWA公司生产,型号为AQ6370C)测量激光的光谱,如图2所示。图2(a)为种子光的光谱线,其波长为1342.11 nm,其谱线单色性较好,此时功率腔内还未形成激光振荡。图2(b)为没有种子光时从激光器的谐振腔开始振荡所获得的激光谱线,波长为1342.15 nm,因为腔内未加单向器等,谐振腔为驻波腔,模式较差,为宽带的多模激光。图2(c)为功率腔未锁定时种子光光谱和从激光器光谱,从图中可以清晰地看到两个单独分开的光谱,由此可知种子模和功率腔的多模激光未相互影响。图2(d)为锁定后1342 nm放大光的光谱,其波长为1342.11 nm,放大后模式和种子光波长一致,此时可以判断种子光对从激光器进行了很好的控制,且功率得到大幅度提高。在初始阶段,从激光器的腔内有许多可能起振的纵模频率,它们均可能在自发辐射噪声中建立振荡,此时即为宽带的自然模(1342 nm)。如果没有种子光的注入,自然模将在功率腔内开始振荡并形成激光(1342.15 nm)输出,此时激光为双向输出。在PDH锁频基础上,种子光(1342.11 nm)注入从激光功率腔内,腔内与种子光模式相同的纵模功率(或光子数)将会因种子光的注入而极快增加,迅速超过腔内的其他所有模式,形成与种子光模式一致的1341.11 nm激光,此时功率腔内的激光由原来的双向输出变化为与种子光方向一致的激光输出。成功实现注入锁频的关键因素是种子模增益要超过自然模增益,这样即可实现种子光在功率腔的频率锁定,同时提高激光输出的功率和单色性。

图 2. 种子光注入锁定实验光谱采集图。(a)种子光光谱(1342.11 nm);(b)从激光器光谱(1342.15 nm);(c)未锁定时两光谱线(1342.11 nm和1342.15 nm);(d)锁定后激光光谱(1342.11 nm)

Fig. 2. Spectra of injection locking experiment of seed laser. (a) Spectrum of seed laser (1342.11 nm); (b) spectrum of ring laser (1342.15 nm); (c) unlocked spectrum (1342.11 nm and 1342.15 nm); (d) injection-locked spectrum (1342.11 nm)

下载图片 查看所有图片

表 1. 不同透过率输入耦合镜时腔内光谱相对强度比较

Table 1. Relative strength of the spectrum with different transmittance of input coupling mirror

T2 /%2471020
Injection-lockedPower /W6.06.48.36.65Unlocked

查看所有表

接着,通过扫描干涉仪(型号为SA210-12B,美国Thorlabs公司)对1342 nm放大光进行了频率特性测量,结果如图3所示,从图中可以看出激光器处于单频运转,谱线宽度约240 MHz。

图 3. 激光的频率特性图

Fig. 3. Laser frequency property

下载图片 查看所有图片

种子光进入从激光器谐振腔内后,其注入腔内的功率和输入耦合镜的透过率有很大的关系,即要满足阻抗匹配[4]。不同的透过率,对注入锁定放大的影响也不同。实验中,将1.0 W的种子光注入腔内,就实验室中几种具有不同透过率T2的输入耦合镜M2进行实验,其数据如表1所示,从表中可以看出,锁定放大后,透过率为7%的耦合镜实验效果较好,对于透过率为20%输入镜,因为信号峰太低,噪声大,未能成功锁定。

对于透过率为7%的输入镜,又进行了种子光和从激光功率的锁定放大实验。从激光器在无种子注入的时候双向运转,沿着种子光的方向定为正向,另一个方向为逆向。其中图4给出系统锁频前后的功率随着种子光功率的变化关系,此时保持从激光器功率腔的功率不变,正向激光功率为3.1 W,逆向功率与正向基本相同。种子光功率为49 mW时,功率较小,锁频效果较差,此时种子模与从激光器的自然模功率相差较大,正向功率仅增加370 mW,属于未全部锁定状态,逆向的激光能量只有小部分转化为正向激光能量。随着种子光功率增大,逆向光的能量逐步转化为正向输出,正向激光功率逐渐增大,锁频也更加稳定,在1.0 W时,正向总功率达到8.3 W。因此在注入锁定放大实验中,提高种子光功率是增加放大效率和稳定性的有效途径。

图 4. 激光锁频前后输出功率随着种子光功率的变化

Fig. 4. Output powervarying with different seed power of injection-locked and unlocked laser

下载图片 查看所有图片

图5为种子光功率注入为1.0 W时,随着从激光器功率增大,系统锁频前后的功率变化曲线。圆点曲线代表未锁频前功率腔双向运转总功率与种子光功率的和,方块曲线为锁频后输出的总功率。从图中可以看出,当系统锁定时,功率腔的双向运转变为沿种子光注入方向的单向运转,且整体功率增大,即出现了放大现象。随着从激光器功率增大,注入锁定放大功率也增大,在泵浦功率为35 W时,功率腔双向运转总功率为6.1 W,锁定后,功率腔双向运转因种子光的调制变为单向运转,放大后最大功率为8.3 W。受功率腔功率和系统噪声的限制,继续加大电流,放大功率不再增加。

图 5. 激光锁频前后输出功率随着泵浦功率的变化

Fig. 5. Output power varying with different pump power of injection-locked and unlocked laser

下载图片 查看所有图片

图6给出激光器为锁频状态时,正向激光功率随种子光波长改变时的变化情况。调节种子光的波长,使其在一定范围内不跳模连续调谐。从激光器波长不变,改变种子光波长时,两者之间的频差即频率失谐量发生变化。当种子光注入为1.0 W,从激光器未锁定状态的单侧功率为1.8 W。激光完全锁定后,输出最高功率为4.8 W,波长为1342.15 nm。当注入种子光的波长从1342.15 nm向长短波两个方向改变时,即频率失谐量不断增大,正向功率会降低,直到1.8 W时,从激光器完全失锁。整个激光器调谐范围为1342.05~1342.25 nm,即±0.10 nm。继续保持种子光注入功率不变,使从激光器在未锁定状态的单侧功率增大到2.8 W。激光器锁定后,最大功率为7.8 W,调谐范围为1342.09~1342.21 nm,即±0.06 nm,相比1.8 W时调谐范围变小。注入种子光能量不变时,从激光器的能量增大,使得整个激光器的调谐范围变小,也可以说增加调谐范围的有效途径是增大注入种子光的能量。

图 6. 激光的波长调谐曲线图

Fig. 6. Tuning curves of laser wavelength

下载图片 查看所有图片

图7为激光器自由运转输出功率在8.3 W时测得的功率稳定性曲线,1 h内功率波动小于2%。激光稳定性受PDH锁频的影响较大,需对外部谐振腔进行封闭保护,以尽量减小外界环境的扰动和机械振动等对系统的干扰。

图 7. 激光器的功率稳定性测量图

Fig. 7. Power stability of the laser

下载图片 查看所有图片

4 结论

报道了以1342 nm可调谐连续光为种子光,通过“8”字环形结构的功率腔获得单频可调谐1342 nm红外光的研究。分析了种子光注入锁频激光器中放大参数的影响,通过调整不同透过率的输入镜和注入种子光功率大小来研究功率腔的放大变化情况,在1.0 W的种子光注入条件下,获得了最高8.3 W单频连续单频1342 nm激光输出。

在以后的实验中,可以改进从激光器腔结构,使功率腔自身功率增大,从而增加整个系统的放大功率,还可以增加锁频精度、降低系统噪声影响、提高种子光功率来获得更高功率、更大调谐范围和更稳定的可调谐1342 nm红外光。

参考文献

[1] 李星, 张大为, 华玉婷, 等. 大功率1.3 μm二极管泵浦Nd∶YAG激光器研究[J]. 激光与红外, 2020, 50(7): 821-824.

    Li X, Zhang D W, Hua Y T, et al. Research on high power 1.3 μm diode pumped Nd∶YAG laser[J]. Laser & Infrared, 2020, 50(7): 821-824.

[2] 巩马理, 陆成强. 声光调Q的Nd∶YVO4晶体1342 nm激光器[J]. 光学学报, 2008, 28(3): 502-506.

    Gong M L, Lu C Q. Acousto-optically Q-switched 1342 nm laser with Nd∶YVO4 crystals[J]. Acta Optica Sinica, 2008, 28(3): 502-506.

[3] 李平, 陈晓寒, 王青圃, 等. 激光二极管抽运主动调Q陶瓷Nd∶YAG 1319 nm激光器特性研究[J]. 光学学报, 2010, 30(10): 2963-2966.

    Li P, Chen X H, Wang Q P, et al. Study of adiode-pumped actively Q-switched Nd∶YAG ceramic 1319 nm laser[J]. Acta Optica Sinica, 2010, 30(10): 2963-2966.

[4] Koch P, Ruebel F, Bartschke J, et al. 5.7 W single-frequency laser at 671 nm by single-pass sencond harmonic generation of a 172 W injection-locked 1342 nm Nd∶YVO4 ring laser using periondically poled MgO∶LiNbO3[J]. Applied optics, 2015, 54(33): 9954-9959.

[5] 孙桂侠, 刘涛, 钱金宁, 等. 可调谐全固态Nd∶YVO4/LBO倍频连续671 nm环形激光器[J]. 中国激光, 2013, 40(6): 0602011.

    Sun G X, Liu T, Qian J N, et al. Tunable all-solid-state continuous wave intra-cavity frequency-doubled Nd∶YVO4/LBO 671 nm ring laser[J]. Chinese Journal of Lasers, 2013, 40(6): 0602011.

[6] Hamish O, Piper J A. Compact all solid-state high-repetition-rate 336 nm source based on a frequency quadrupled Q-switched diode-pumped Nd∶YVO4 laser[J]. Optics Express, 2005, 13(23): 9465-9471.

[7] 徐瑾瑾, 张行愚, 丛振华, 等. Nd 3+∶YAG/KTiOAsO4可调谐拉曼激光器[J]. 中国激光, 2020, 47(6): 0601002.

    Xu J J, Zhang X Y, Cong Z H, et al. Tunable Nd 3+∶YAG/KTiOAsO4 Raman lasers[J]. Chinese Journal of Lasers, 2020, 47(6): 0601002.

[8] 何禹彤, 江阳, 訾月姣, 等. 基于注入锁定和时域综合的倍频三角波产生技术[J]. 中国激光, 2018, 45(1): 0101005.

    He Y T, Jiang Y, Zi Y J, et al. Frequency doubled triangular waveform generation based on injection locking and time-domain synthesis[J]. Chinese Journal of Lasers, 2018, 45(1): 0101005.

[9] 许夏飞, 鲁燕华, 张雷, 等. 外腔谐振倍频8.7 W连续单频绿光技术研究[J]. 中国激光, 2016, 43(11): 1101010.

    Xu X F, Lu Y H, Zhang L, et al. Technical study of 8.7 W continuous wave single frequency green laser based on extra-cavity frequency doubling[J]. Chinese Journal of Lasers, 2016, 43(11): 1101010.

[10] 卞正兰, 黄崇德, 高敏, 等. PDH激光稳频控制技术研究[J]. 中国激光, 2012, 39(3): 0302001.

    Bian Z L, Huang C D, Gao M, et al. Research on control technique for Pound-Drever-Hall laser frequency stabilizing system[J]. Chinese Journal of Lasers, 2012, 39(3): 0302001.

[11] 彭瑜, 赵阳, 李烨, 等. 3种方法实现461 nm外腔倍频激光器的锁定[J]. 中国激光, 2010, 37(2): 345-350.

    Peng Y, Zhao Y, Li Y, et al. Three methods to lock the second harmonic generation for 461 nm[J]. Chinese Journal of Lasers, 2010, 37(2): 345-350.

[12] 郭勇, 邱琪, 王云祥, 等. 基于PDH的法布里-珀罗腔稳定性研究[J]. 中国激光, 2016, 43(4): 0402003.

    Guo Y, Qiu Q, Wang Y X, et al. Research on stability of Fabry-Perot cavity based on PDH[J]. Chinese Journal of Lasers, 2016, 43(4): 0402003.

[13] 闫庆, 袁萌, 何甜甜, 等. 基于分子吸收的脉冲激光锁频方法研究[J]. 光学学报, 2019, 39(10): 1028005.

    Yan Q, Yuan M, He T T, et al. Pulse laser frequency locking method based on molecular absorption[J]. Acta Optica Sinica, 2019, 39(10): 1028005.

孙桂侠, 凌菲彤, 熊明, 刘涛, 安振杰, 张志忠. 单频可调谐连续1342 nm注入锁频环形激光器[J]. 中国激光, 2021, 48(7): 0701004. Guixia Sun, Feitong Ling, Ming Xiong, Tao Liu, Zhenjie An, Zhizhong Zhang. A Tunable CW Single-Frequency 1342-nm Injection-Locked Ring Laser[J]. Chinese Journal of Lasers, 2021, 48(7): 0701004.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!